Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Access Microbiol ; 6(6)2024.
Artigo em Inglês | MEDLINE | ID: mdl-39045256

RESUMO

Introduction. Streptococcus pyogenes [group A streptococci (GAS)] is the causative agent of pharyngitis and various other syndromes involving cellulitis, streptococcal toxic shock syndrome (STSS), and necrotising fasciitis. Although the prevalence of GAS infections globally remains high, necessitating the widespread use of ß-lactam antibiotics, GAS have remained largely susceptible to these agents. However, there have been several reports of GAS with reduced susceptibility harbouring mutations in genes for penicillin-binding proteins (PBPs). The objectives of this study were to examine the in vitro ß-lactam susceptibility patterns of group A streptococci, determine the prevalence of drug resistance, and ascertain whether such resistance could be attributed to mutations in specific PBP genes. Methods. In this study, we sought to use Sanger sequencing to identify mutations in PBP genes of Streptococcus pyogenes isolated from patients that required inpatient and outpatient care that could confer reduced PBP affinity for penicillin and/or cephalosporin antibiotics. All isolates were screened for susceptibility to penicillin, amoxicillin, and cefazolin using E-test strips. Results. While there were no documented cases of reduced susceptibility to penicillin or amoxicillin, 13 isolates had reduced susceptibility to cefazolin. Examination of pbp1a by Sanger sequencing revealed several isolates with single amino acid substitutions, which could potentially reduce the affinity of PBP 1A for cefazolin and possibly other first-generation cephalosporins. Conclusion. Penicillin and penicillin-derived antibiotics remain effective treatment options for GAS infections, but active surveillance is needed to monitor for changes to susceptibility patterns against these and other antibiotics and understand the genetic mechanisms contributing to them.

2.
Ann Clin Microbiol Antimicrob ; 16(1): 33, 2017 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-28482925

RESUMO

BACKGROUND: Identification of the prevalence and spread of ESBL-mediated antibiotic resistance is essential especially in the hospital setting. It is for this reason, more and more studies are highlighting the importance of complementing phenotypic ESBL-detection techniques with molecular techniques in order to understand the basis and extent of this form of resistance among clinically evolved bacterial populations, especially those belonging to the Enterobacteriaceae family. However, in Trinidad and Tobago and other Caribbean countries, very little is known regarding ESBL detection rates and/or the prevalence of genes conferring ESBL resistance. METHODOLOGY: Sixty-six Klebsiella pneumoniae isolates from clinical specimens phenotypically identified by the Microscan Walkaway-96 System as potential ESBL-producers were analysed in this study. Screening and confirmation of these isolates as ESBL producers was done by the Clinical and Laboratory Standards Institute (CLSI) approved methods. Polymerase chain reaction amplification of beta-lactamase genes bla TEM, bla SHV, bla CTX-M1, bla CTX-M2 and bla AmpC was performed to identify mechanisms of ß-lactam resistance. RESULTS: ESBL-producing K. pneumoniae was confirmed in 78.8% (41/52) from isolates collected from a variety of sources during the period, April-July 2015. bla SHV (84.8%) and bla CTX-M (46.9%) were the predominant ß-lactamase genes identified. A single K. pneumoniae isolate possessed a bla CTX-M group 2 beta-lactamase gene. RAPD analysis identified a number of epidemiologically related isolates. However, current isolates were unrelated to isolates from previous years. CONCLUSION: This study revealed that among K. pneumoniae isolates exhibiting extended spectrum ß-lactam resistance, there was a high prevalence of bla SHV and bla CTX-M genes. This result highlights the need for a reliable epidemiological apparatus that involves the molecular characterisation of ESBL resistance.


Assuntos
Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/isolamento & purificação , Centros de Atenção Terciária , beta-Lactamases/genética , beta-Lactamases/isolamento & purificação , Proteínas de Bactérias/genética , Análise por Conglomerados , DNA Bacteriano/genética , Humanos , Testes de Sensibilidade Microbiana , Reação em Cadeia da Polimerase/métodos , Técnica de Amplificação ao Acaso de DNA Polimórfico/métodos , Trinidad e Tobago , Resistência beta-Lactâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA