Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Diabetes ; 72(12): 1809-1819, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37725835

RESUMO

The importance of glucokinase (GK) in the regulation of insulin secretion has been highlighted by the phenotypes of individuals with activating and inactivating mutations in the glucokinase gene (GCK). Here we report 10 individuals with congenital hyperinsulinism (HI) caused by eight unique activating mutations of GCK. Six are novel and located near previously identified activating mutations sites. The first recognized episode of hypoglycemia in these patients occurred between birth and 24 years, and the severity of the phenotype was also variable. Mutant enzymes were expressed and purified for enzyme kinetics in vitro. Mutant enzymes had low glucose half-saturation concentration values and an increased enzyme activity index compared with wild-type GK. We performed functional evaluation of islets from the pancreata of three children with GCK-HI who required pancreatectomy. Basal insulin secretion in perifused GCK-HI islets was normal, and the response to glyburide was preserved. However, the threshold for glucose-stimulated insulin secretion in perifused glucokinase hyperinsulinism (GCK-HI) islets was decreased, and glucagon secretion was greatly suppressed. Our evaluation of novel GCK disease-associated mutations revealed that the detrimental effects of these mutations on glucose homeostasis can be attributed not only to a lowering of the glucose threshold of insulin secretion but also to a decreased counterregulatory glucagon secretory response. ARTICLE HIGHLIGHTS: Our evaluation of six novel and two previously published activating GCK mutations revealed that the detrimental effects of these mutations on glucose homeostasis can be attributed not only to a lowering of the glucose threshold of insulin secretion but also to a decreased counterregulatory glucagon secretory response. These studies provide insights into the pathophysiology of GCK-hyperinsulinism and the dual role of glucokinase in ß-cells and α-cells to regulate glucose homeostasis.


Assuntos
Hiperinsulinismo Congênito , Hiperinsulinismo , Criança , Humanos , Glucoquinase/genética , Glucagon , Hiperinsulinismo Congênito/genética , Hiperinsulinismo/genética , Glucose , Mutação , Fenótipo
2.
Clin Transl Oncol ; 25(12): 3447-3459, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37199906

RESUMO

PURPOSE: HOX transcribed antisense RNA (HOTAIR) is a long noncoding RNA (LncRNA) that promotes tumor progression. Exosomes are critically involved in cancer progression. The presence of HOTAIR in the circulating exosomes and the roles of exosomal HOTAIR in gastric cancer (GC) remains unknown. This study aimed to investigate the role of HOTAIR in exosomes in promoting the growth and metastasis of GC. METHODS: Serum exosomes from GC patients were captured by CD63 immunoliposome magnetic spheres (CD63-IMS), and the biological characteristics of the exosomes were identified. The expression levels of HOTAIR in GC cells, tissues, serum and serum exosomes were detected by fluorescence quantitative PCR (qRT-PCR), and the clinicopathological correlation was statistically analyzed. The growth and metastasis abilities of GC cells with HOTAIR knockdown in vitro were evaluated by cell experiment. The effects of HOTAIR highly-expressed NCI-N87 cell-derived exosomes were used to treat HOTAIR lowly-expressed MKN45 cells on GC growth and metastasis were also evaluated. RESULTS: The exosomes isolated by CD63-IMS had a particle size of 89.78 ± 4.8 nm and were oval membranous particles. The expression of HOTAIR in tumor tissues and serum of GC patients was increased (P < 0.05), and the expression of HOTAIR in serum exosomes was significantly increased (P < 0.01). The in NCI-N87 and MKN45 cell experiment demonstrated that HOTAIR knockdown by RNA interference suppressed cell growth and metastasis in NCI-N87 cells. Coculture of exosomes secreted by NCI-N87 cells with MKN45 cells significantly increased the expression of HOTAIR, and enhanced cell growth and metastasis. CONCLUSION: LncRNA HOTAIR can be used as a potential biomarker which provides a new way for the diagnosis and treatment of GC.


Assuntos
Exossomos , RNA Longo não Codificante , Neoplasias Gástricas , Humanos , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Exossomos/metabolismo , Regulação Neoplásica da Expressão Gênica , RNA Antissenso , RNA Longo não Codificante/metabolismo , Neoplasias Gástricas/patologia
3.
Braz J Microbiol ; 51(4): 1873-1884, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32661898

RESUMO

BACKGROUND: Casuarina equisetifolia is one of the most important artificially planted protective forests along the coast in southern China for windbreaks, soil erosion, and sand dune stabilization. Self-renewing of C. equisetifolia is very limited, which might be caused by low soil nutrient levels and reduced microbial activity. METHODS: Use of high-throughput sequencing of the 18S rDNA to investigate the microbial communities from the rhizosphere and root endosphere of C. equisetifolia in young-aged, intermediate-aged, and mature-aged forests. RESULTS: Our results indicate that the diversity of rhizosphere fungal microbiomes in field-grown C. equisetifolia is much lower than that of the endosphere microbiomes. Bioinformatic analysis showed that rhizocompartments produce the strongest differentiation of rhizosphere and endosphere communities. Notably, the distribution of rhizosphere fungi communities was significantly influenced by the environmental factors, not by forest ages. CONCLUSIONS: The presented study suggests that the rhizocompartments and environmental factors, rather than forest ages, determine the diversities of fungal community.


Assuntos
Fagales/microbiologia , Florestas , Micobioma , Raízes de Plantas/microbiologia , Rizosfera , China , DNA Ribossômico/genética , Fagales/classificação , Fungos/classificação , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Microbiologia do Solo
5.
Neurotox Res ; 37(2): 326-337, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31773641

RESUMO

Caffeic acid (CA) is a hydroxycinnamic acid derivative and polyphenol with antioxidant and anti-inflammatory activities. The neuroprotective properties of CA still need detailed characterization in different biological models. Here, the antioxidant and neuroprotective effects of CA were compared in in vitro and in vivo neurotoxic models. Biochemical outcomes of cell dysfunction, oxidative damage, and transcriptional regulation were assessed in rat cortical slices, whereas endpoints of physiological stress and motor alterations were characterized in Caenorhabditis elegans (C. elegans). In rat cortical slices, CA (100 µM) prevented, in a differential manner, the loss of reductive capacity, the cell damage, and the oxidative damage induced by the excitotoxin quinolinic acid (QUIN, 100 µM), the pro-oxidant ferrous sulfate (FeSO4, 25 µM), and the dopaminergic toxin 6-hydroxydopamine (6-OHDA, 100 µM). CA also restored the levels of nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE; a master antioxidant regulatory pathway) binding activity affected by the three toxins. In wild-type (N2) of C. elegans, but not in the skn-1 KO mutant strain (worms lacking the orthologue of mammalian Nrf2), CA (25 mM) attenuated the loss of survival induced by QUIN (100 mM), FeSO4 (15 mM), and 6-OHDA (25 mM). Motor alterations induced by the three toxic models in N2 and skn-1 KO strains were prevented by CA in a differential manner. Our results suggest that (1) CA affords partial protection against different toxic insults in mammalian brain tissue and in C. elegans specimens; (2) the Nrf2/ARE binding activity participates in the protective mechanisms evoked by CA in the mammalian cortical tissue; (3) the presence of the orthologous skn-1 pathway is required in the worms for CA to exert protective effects; and (4) CA exerts antioxidant and neuroprotective effects through homologous mechanisms in different species.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Ácidos Cafeicos/farmacologia , Córtex Cerebral/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fármacos Neuroprotetores/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Córtex Cerebral/efeitos dos fármacos , Relação Dose-Resposta a Droga , Masculino , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar , Transdução de Sinais/fisiologia , Especificidade da Espécie
6.
Arch Toxicol ; 90(3): 633-45, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25579234

RESUMO

Reserpine is used as an animal model of parkinsonism. We hypothesized that the involuntary movements induced by reserpine in rodents are induced by dopaminergic toxicity caused by extracellular dopamine accumulation. The present study tested the effects of reserpine on the dopaminergic system in Caenorhabditis elegans. Reserpine was toxic to worms (decreased the survival, food intake, development and changed egg laying and defecation cycles). In addition, reserpine increased the worms' locomotor rate on food and decreased dopamine levels. Morphological evaluations of dopaminergic CEP neurons confirmed neurodegeneration characterized by decreased fluorescence intensity and the number of worms with intact CEP neurons, and increased number of shrunken somas per worm. These effects were unrelated to reserpine's effect on decreased expression of the dopamine transporter, dat-1. Interestingly, the locomotor rate on food and the neurodegenerative parameters fully recovered to basal conditions upon reserpine withdrawal. Furthermore, reserpine decreased survival in vesicular monoamine transporter and dat-1 loss-of-function mutant worms. In addition, worms pre-exposed to dopamine followed by exposure to reserpine had decreased survival. Reserpine activated gst-4, which controls a phase II detoxification enzymes downstream of nuclear factor (erythroid-derived-2)-like 2. Our findings establish that the dopamine transporter, dat-1, plays an important role in reserpine toxicity, likely by increasing extracellular dopamine concentrations.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Dopamina/metabolismo , Reserpina/toxicidade , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Defecação/efeitos dos fármacos , Modelos Animais de Doenças , Dopamina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Óvulo/efeitos dos fármacos , Doença de Parkinson/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA