Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Braz. J. Microbiol. ; 48(2): 305-313, abr.-jun. 2017. ilus, tab, graf
Artigo em Inglês | VETINDEX | ID: vti-17529

RESUMO

The aerobic degradation of aromatic compounds by bacteria is performed by dioxygenases. To show some characteristic patterns of the dioxygenase genotype and its degradation specificities, twenty-nine gram-negative bacterial cultures were obtained from sediment contaminated with phenolic compounds in Wuhan, China. The isolates were phylogenetically diverse and belonged to 10 genera. All 29 gram-negative bacteria were able to utilize phenol, m-dihydroxybenzene and 2-hydroxybenzoic acid as the sole carbon sources, and members of the three primary genera Pseudomonas, Acinetobacter and Alcaligenes were able to grow in the presence of multiple monoaromatic compounds. PCR and DNA sequence analysis were used to detect dioxygenase genes coding for catechol 1,2-dioxygenase, catechol 2,3-dioxygenase and protocatechuate 3,4-dioxygenase. The results showed that there are 4 genotypes; most strains are either PNP (catechol 1,2-dioxygenase gene is positive, catechol 2,3-dioxygenase gene is negative, protocatechuate 3,4-dioxygenase gene is positive) or PNN (catechol 1,2-dioxygenase gene is positive, catechol 2,3-dioxygenase gene is negative, protocatechuate 3,4-dioxygenase gene is negative). The strains with two dioxygenase genes can usually grow on many more aromatic compounds than strains with one dioxygenase gene. Degradation experiments using a mixed culture representing four bacterial genotypes resulted in the rapid degradation of phenol. Determinations of substrate utilization and phenol degradation revealed their affiliations through dioxygenase genotype data.(AU)


Assuntos
Biodegradação Ambiental , Fenóis , Dioxigenases , Compostos Fenólicos , Bactérias Aeróbias Gram-Negativas , Bactérias Anaeróbias Gram-Negativas
2.
Braz. j. microbiol ; 48(2): 305-313, April.-June 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-839385

RESUMO

Abstract The aerobic degradation of aromatic compounds by bacteria is performed by dioxygenases. To show some characteristic patterns of the dioxygenase genotype and its degradation specificities, twenty-nine gram-negative bacterial cultures were obtained from sediment contaminated with phenolic compounds in Wuhan, China. The isolates were phylogenetically diverse and belonged to 10 genera. All 29 gram-negative bacteria were able to utilize phenol, m-dihydroxybenzene and 2-hydroxybenzoic acid as the sole carbon sources, and members of the three primary genera Pseudomonas, Acinetobacter and Alcaligenes were able to grow in the presence of multiple monoaromatic compounds. PCR and DNA sequence analysis were used to detect dioxygenase genes coding for catechol 1,2-dioxygenase, catechol 2,3-dioxygenase and protocatechuate 3,4-dioxygenase. The results showed that there are 4 genotypes; most strains are either PNP (catechol 1,2-dioxygenase gene is positive, catechol 2,3-dioxygenase gene is negative, protocatechuate 3,4-dioxygenase gene is positive) or PNN (catechol 1,2-dioxygenase gene is positive, catechol 2,3-dioxygenase gene is negative, protocatechuate 3,4-dioxygenase gene is negative). The strains with two dioxygenase genes can usually grow on many more aromatic compounds than strains with one dioxygenase gene. Degradation experiments using a mixed culture representing four bacterial genotypes resulted in the rapid degradation of phenol. Determinations of substrate utilization and phenol degradation revealed their affiliations through dioxygenase genotype data.


Assuntos
Fenol/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Bactérias Gram-Negativas/enzimologia , Bactérias Gram-Negativas/metabolismo , Filogenia , Pseudomonas , Poluentes do Solo/metabolismo , Acinetobacter , DNA Bacteriano/genética , DNA Bacteriano/química , DNA Ribossômico/genética , DNA Ribossômico/química , Carbono/metabolismo , RNA Ribossômico 16S/genética , Biotransformação , Análise por Conglomerados , China , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Sedimentos Geológicos/microbiologia , Alcaligenes , Poluição Ambiental , Bactérias Gram-Negativas/classificação , Bactérias Gram-Negativas/genética
3.
Braz J Microbiol ; 48(2): 305-313, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28065387

RESUMO

The aerobic degradation of aromatic compounds by bacteria is performed by dioxygenases. To show some characteristic patterns of the dioxygenase genotype and its degradation specificities, twenty-nine gram-negative bacterial cultures were obtained from sediment contaminated with phenolic compounds in Wuhan, China. The isolates were phylogenetically diverse and belonged to 10 genera. All 29 gram-negative bacteria were able to utilize phenol, m-dihydroxybenzene and 2-hydroxybenzoic acid as the sole carbon sources, and members of the three primary genera Pseudomonas, Acinetobacter and Alcaligenes were able to grow in the presence of multiple monoaromatic compounds. PCR and DNA sequence analysis were used to detect dioxygenase genes coding for catechol 1,2-dioxygenase, catechol 2,3-dioxygenase and protocatechuate 3,4-dioxygenase. The results showed that there are 4 genotypes; most strains are either PNP (catechol 1,2-dioxygenase gene is positive, catechol 2,3-dioxygenase gene is negative, protocatechuate 3,4-dioxygenase gene is positive) or PNN (catechol 1,2-dioxygenase gene is positive, catechol 2,3-dioxygenase gene is negative, protocatechuate 3,4-dioxygenase gene is negative). The strains with two dioxygenase genes can usually grow on many more aromatic compounds than strains with one dioxygenase gene. Degradation experiments using a mixed culture representing four bacterial genotypes resulted in the rapid degradation of phenol. Determinations of substrate utilization and phenol degradation revealed their affiliations through dioxygenase genotype data.


Assuntos
Dioxigenases/genética , Dioxigenases/metabolismo , Bactérias Gram-Negativas/enzimologia , Bactérias Gram-Negativas/metabolismo , Fenol/metabolismo , Acinetobacter , Alcaligenes , Biotransformação , Carbono/metabolismo , China , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Poluição Ambiental , Sedimentos Geológicos/microbiologia , Bactérias Gram-Negativas/classificação , Bactérias Gram-Negativas/genética , Filogenia , Reação em Cadeia da Polimerase , Pseudomonas , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Poluentes do Solo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA