Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Sci Total Environ ; 857(Pt 1): 159376, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36240935

RESUMO

Wastewater treatment plants (WWTPs) are recognized as important sources of Antibiotic Resistant Bacteria (ARBs) and Antibiotic Resistant Genes (ARGs), and might play a role in the removal and dissemination of antimicrobial resistance (AMR) in the environment. Detailed information about AMR removal by the different treatment technologies commonly applied in urban WWTPs is needed. This study investigated the occurrence, removal and characterization of ARBs in WWTPs employing different technologies: WWTP-A (conventional activated sludge-CAS), WWTP-B (UASB reactor followed by biological trickling filter) and WWTP-C (modified activated sludge followed by UV disinfection-MAS/UV). Samples of raw sewage (RI) and treated effluent (TE) were collected and, through the cultivation-based method using 11 antibiotics, the antibiotic resistance profiles were characterized in a one-year period. MAS was effective in reducing ARB counts (2 to 3 log units), compared to CAS (1 log unit) and UASB/BTF (0.5 log unit). The composition of cultivable ARB differed between RI and TE samples. Escherichia was predominant in RI (56/118); whilst in TE Escherichia (31/118) was followed by Bacillus (22/118), Shigella (14/118) and Enterococcus (14/118). Most of the isolates identified (370/394) harboured at least two ARGs and in over 80 % of the isolates, 4 or more ARG (int1, blaTEM, TetA, sul1 and qnrB) were detected. A reduction in the resistance prevalence was observed in effluents after CAS and MAS processes; whilst a slight increase was observed in treated effluents from UASB/BTF and after UV disinfection stage. The multi-drug resistance (MDR) phenotype was attributed to 84.3 % of the isolates from RI (27/32) and 63.6 % from TE (21/33) samples and 52.3 % of the isolates (34/65) were resistant to carbapenems (imipenem, meropenem, ertapenem). The results indicate that treated effluents are still a source for MDR bacteria and ARGs dissemination to aquatic environments. The importance of biological sewage treatment was reinforced by the significant reductions in ARB counts observed. However, implementation of additional treatments is needed to mitigate MDR bacteria release into the environment.


Assuntos
Esgotos , Purificação da Água , Esgotos/microbiologia , Antagonistas de Receptores de Angiotensina/farmacologia , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/análise , Brasil , Genes Bacterianos , Antibacterianos/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Bactérias/genética , Farmacorresistência Bacteriana Múltipla
2.
Sci Total Environ ; 860: 160498, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36436622

RESUMO

The COVID-19 pandemic has caused a global health crisis, and wastewater-based epidemiology (WBE) has emerged as an important tool to assist public health decision-making. Recent studies have shown that the SARS-CoV-2 RNA concentration in wastewater samples is a reliable indicator of the severity of the pandemic for large populations. However, few studies have established a strong correlation between the number of infected people and the viral concentration in wastewater due to variations in viral shedding over time, viral decay, infiltration, and inflow. Herein we present the relationship between the number of COVID-19-positive patients and the viral concentration in wastewater samples from three different hospitals (A, B, and C) in the city of Belo Horizonte, Minas Gerais, Brazil. A positive and strong correlation between wastewater SARS-CoV-2 concentration and the number of confirmed cases was observed for Hospital B for both regions of the N gene (R = 0.89 and 0.77 for N1 and N2, respectively), while samples from Hospitals A and C showed low and moderate correlations, respectively. Even though the effects of viral decay and infiltration were minimized in our study, the variability of viral shedding throughout the infection period and feces dilution due to water usage for different activities in the hospitals could have affected the viral concentrations. These effects were prominent in Hospital A, which had the smallest sewershed population size, and where no correlation between the number of defecations from COVID-19 patients and viral concentration in wastewater was observed. Although we could not determine trends in the number of infected patients through SARS-CoV-2 concentrations in hospitals' wastewater samples, our results suggest that wastewater monitoring can be efficient for the detection of infected individuals at a local level, complementing clinical data.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , Pandemias , Águas Residuárias , Brasil/epidemiologia , RNA Viral , Hospitais
3.
Environ Sci Pollut Res Int ; 29(60): 90549-90566, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35871195

RESUMO

Dissolved gases in the effluent of anaerobic reactors, specifically dissolved methane (D-CH4) and sulphide (S2-), are a drawback for anaerobic-based sewage treatment plants (STPs). This article studied the simultaneous desorption/removal of both gases from anaerobic effluents with hollow fibre membrane contactors (HFMCs), evaluating two types of membrane materials (e.g. microporous and dense) at different operating conditions (atmospheric air as sweeping gas or vacuum, and different gas/liquid flows and vacuum pressures). The transfer of other gases, such as O2 and CO2, was studied as well. Desorption/removal efficiencies up to 99% for D-CH4 and 100% for S2- were obtained, with the higher efficiencies reported for the dense HFMC and with air as sweeping gas. It was found that the removal mechanism for S2- was oxidation with O2 from the air. In addition, the use of air as sweeping gas allowed the obtention of a nearly O2 saturated effluent, with more elevated dissolved oxygen concentrations in the microporous HFMC. Finally, it was found that the higher mass-transfer resistance in the dense membrane was compensated by a better performance in the liquid phase (lower mass-transfer resistance) in this unit, which allowed better D-CH4 desorption efficiencies.


Assuntos
Metano , Sulfetos
4.
Water Res ; 212: 118069, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35077942

RESUMO

Investigating waterborne viruses is of great importance to minimizing risks to public health. Viruses tend to adsorb to sludge particles from wastewater processes by electrostatic and hydrophobic interactions between virus, aquatic matrix, and particle surface. Sludge is often re-used in agriculture; therefore, its evaluation is also of great interest to public health. In the present study, a pilot scale system treating real domestic wastewater from a large city in Brazil was used to evaluate the removal, the overall reduction, and liquid-solid partitioning of human adenovirus (HAdV), the novel coronavirus (SARS-CoV-2) and fecal indicators (F-specific coliphages and E. coli). The system consists of a high-rate algal pond (HRAP) post-treating the effluent of an upflow anaerobic sludge blanket (UASB) reactor. Samples were collected from the influent and effluent of each unit, as well as from the sludge of the UASB and from the microalgae biomass in the HRAP. Pathogens and indicators were quantified by quantitative polymerase chain reaction (qPCR) (for HAdV), qPCR with reverse transcription (RTqPCR) (for SARS-CoV-2), the double agar plaque assay (for coliphages), and the most probable number (MPN) method (for E. coli). The removal and overall reduction of HAdV and SARS-CoV-2 was greater than 1-log10. Almost 60% of remaining SARS-CoV-2 RNA and more than 70% of remaining HAdV DNA left the system in the sludge, demonstrating that both viruses may have affinity for solids. Coliphages showed a much lower affinity to solids, with only 3.7% leaving the system in the sludge. The system performed well in terms of the removal of organic matter and ammoniacal nitrogen, however tertiary treatment would be necessary to provide further pathogen reduction, if the effluent is to be reused in agriculture. To our knowledge, this is the first study that evaluated the reduction and partitioning of SARS-CoV-2 and HAdV through the complete cycle of a wastewater treatment system consisting of a UASB reactor followed by HRAPs.


Assuntos
COVID-19 , Purificação da Água , Adenoviridae , Anaerobiose , Reatores Biológicos , Escherichia coli , Humanos , RNA Viral , SARS-CoV-2 , Esgotos , Eliminação de Resíduos Líquidos
5.
ACS ES T Water ; 2(11): 2144-2157, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37552743

RESUMO

Peru has been severely affected by the COVID-19 pandemic. By January 2022, Peru had surpassed 200 000 COVID-19 deaths, constituting the highest death rate per capita worldwide. Peru has had several limitations during the pandemic: insufficient testing access, limited contact tracing, a strained medical infrastructure, and many economic hurdles. These limitations hindered the gathering of accurate information about infected individuals with spatial resolution in real time, a critical aspect of effectively controlling the pandemic. Wastewater monitoring for SARS-CoV-2 RNA offered a promising alternative for providing needed population-wide information to complement health care indicators. In this study, we demonstrate the feasibility and value of implementing a decentralized SARS-CoV-2 RNA wastewater monitoring system to assess the spatiotemporal distribution of COVID-19 in three major cities in Peru: Lima, Callao, and Arequipa. Our data on viral loads showed the same trends as health indicators such as incidence and mortality. Furthermore, we were able to identify hot spots of contagion within the surveyed urban areas to guide the efforts of health authorities. Viral decay in the sewage network of the cities studied was found to be negligible (<2%). Overall, our results support wastewater monitoring for SARS-CoV-2 as a valuable and cost-effective tool for monitoring the COVID-19 pandemic in the Peruvian context.

6.
Eng. sanit. ambient ; 26(4): 691-699, ago. 2021. tab, graf
Artigo em Português | LILACS-Express | LILACS | ID: biblio-1339855

RESUMO

RESUMO A recente detecção de material genético (RNA) do novo coronavírus em amostras de fezes e no esgoto aponta para a possibilidade de se identificar a circulação do vírus e até mesmo estimar o número de pessoas infectadas em determinada região pelo monitoramento sistemático do esgoto, configurando-se em importante ferramenta epidemiológica de testagem massiva indireta, incluindo portadores sintomáticos e assintomáticos. Nesse sentido, concebeu-se um projeto para a detecção e a quantificação do novo coronavírus em amostras de esgoto coletadas em 15 sub-bacias de esgotamento sanitário dos ribeirões Arrudas e Onça, visando entender a dinâmica de circulação e a prevalência do vírus nas regiões investigadas. Tais sub-bacias esgotam os efluentes gerados por uma população da ordem de 1,5 milhão de pessoas no município de Belo Horizonte e parte de Contagem. O plano de amostragem contemplou 17 pontos (15 sub-bacias + afluente às 2 estações de tratamento de esgoto) de monitoramento semanal, com coletas compostas durante todo o período da manhã. A detecção e a quantificação do RNA viral efetuaram-se em laboratório por meio de ensaios de RT-qPCR. Os resultados obtidos em quatro semanas de monitoramento (semanas epidemiológicas 21 a 24) mostraram um incremento da ocorrência do vírus, atingindo 100% das regiões investigadas na semana epidemiológica 24. A estimativa da população infectada pelo novo coronavírus pelo monitoramento do esgoto em Belo Horizonte apresentou tendência de crescimento exponencial, sendo até 20 vezes maior do que o número de casos confirmados acumulados. Quanto à circulação do vírus, as concentrações do RNA viral têm se mostrado bastante variáveis nas regiões monitoradas, com maiores porcentagens de população infectada estimada ao norte e nordeste da capital mineira.


ABSTRACT The recent detection of SARS-CoV-2 RNA in stool and sewage samples highlights the possibility of mapping the circulation of the virus and even estimating the number of infected people through the systematic monitoring of sewage in a specific region. Therefore, this is an important epidemiological tool for large-scale indirect testing, including symptomatic and asymptomatic carriers. This project was conceived for the detection and quantification of the SARS-CoV-2 in sewage samples collected in 15 watersheds of the Arrudas and Onça streams, aiming to understand the dynamics of spread and the prevalence of the virus in these regions/watersheds. These sub-basins exhaust the effluents generated by a population of approximately 1.5 million people in the municipality of Belo Horizonte and part of Contagem. Weekly composite samples were collected during the morning periods in seventeen monitoring points (15 water sheds + influent to 2 sewage treatment plants). RNA detection and quantification were performed in the laboratory using RT-qPCR. The results obtained in four weeks of monitoring (epidemiological weeks 21 to 24) showed an increase in the occurrence of the virus, reaching 100% of the monitored regions investigated in epidemiological week 24. The infected population, estimated by sewage monitoring in Belo Horizonte, showed exponential growth, being up to 20 times higher than those of accumulated confirmed cases. As for the dynamics of virus spread, RNA concentrations have shown to be quite variable in the monitored regions with higher percentages of the estimated infected population in the northern and north-eastern portions of Belo Horizonte.

7.
Water Res ; 202: 117388, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34229195

RESUMO

Brazil has become one of the epicentres of the COVID-19 pandemic, with cases heavily concentrated in large cities. Testing data is extremely limited and unreliable, which restricts health authorities' ability to deal with the pandemic. Given the stark demographic, social and economic heterogeneities within Brazilian cities, it is important to identify hotspots so that the limited resources available can have the greatest impact. This study shows that decentralised monitoring of SARS-CoV-2 RNA in sewage can be used to assess the distribution of COVID-19 prevalence in the city. The methodology developed in this study allowed the identification of hotspots by comprehensively monitoring sewers distributed through Belo Horizonte, Brazil's third largest city. Our results show that the most vulnerable neighbourhoods in the city were the hardest hit by the pandemic, indicating that, for many Brazilians, the situation is much worse than reported by official figures.


Assuntos
COVID-19 , Pandemias , SARS-CoV-2/isolamento & purificação , Esgotos/virologia , Brasil/epidemiologia , COVID-19/epidemiologia , Humanos , Prevalência , RNA Viral
8.
Eng. sanit. ambient ; 25(6): 847-857, nov.-dez. 2020. tab, graf
Artigo em Português | LILACS-Express | LILACS | ID: biblio-1142916

RESUMO

RESUMO Estações de tratamento de esgotos (ETEs) estão entre as principais fontes de disseminação de bactérias resistentes a antibióticos (BRAs) e genes de resistência (GRAs) no ambiente. Este trabalho quantificou a ocorrência de bactérias resistentes aos antibióticos ampicilina e cloranfenicol no esgoto bruto (EB), no efluente tratado (ET) e no lodo de duas ETEs em escala plena por um período de nove meses. As unidades investigadas utilizavam os seguintes sistemas de tratamento: ETE-A, sistema de lodos ativados convencional; e a ETE-B, reatores anaeróbios (UASB) seguidos de filtros biológicos percoladores (FBP). Os resultados evidenciaram que a ETE-A foi mais eficiente na redução das concentrações de bactérias resistentes à ampicilina e ao cloranfenicol (cerca de 1,1 e 0,7 log10UFC.mL−1 de remoção, respectivamente), quando comparada com a ETE-B (0,5log10 UFC.mL−1 de remoção para as bactérias resistentes ao cloranfenicol e nenhuma remoção para as resistentes à ampicilina). As amostras de lodo, de ambas ETEs, apresentaram elevadas concentrações de bactérias heterotróficas totais — BHTs (4,8-7,6 log10UFC.mL−1) e de BRAs (3,0-6,3 log10UFC.mL−1). A maioria das cepas resistentes à ampicilina e ao cloranfenicol isoladas foi identificada como sendo da família Enterobacteriaceae. Algumas das espécies identificadas são bactérias potencialmente patogênicas, tais como: Klebsiella pneumoniae, Aeromonas hydrophila, Escherichia coli, Enterococcus faecium, Salmonella spp. Os resultados chamam a atenção para a disseminação de BRAs, potencialmente patogênicas, no meio ambiente a partir do efluente final (proveniente do tratamento secundário) das ETEs, independentemente do tipo de sistema adotado. Fica evidente que para reduzir significativamente a concentração das BRAs no ET, este deveria passar por tratamento adicional e desinfecção.


ABSTRACT Sewage treatment plants (STP) are among the main sources of dissemination of antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARG) into the environment. This work quantified the occurrence of cultivable ampicilin-resistant and chloramphenicol-resistant bacteria in raw sewage, treated effluent and sludge samples from two full-scale STP over nine months. The STP investigated used the following treatment systems: STP-A used conventional activated sludge system; and STP-B, anaerobic reactors (UASB) followed by percolating biological filters (PBF). Results showed that was more efficient in reducing the concentrations of ampicilin- and chloramphenicol-resistant bacteria (around 1.1 and 0.7 log10UFC.mL−1, respectively) when compared to STP-B (0.5 log10 UFC.mL−1 removal of cloramphenicol-resistant bacteria and no-removal of ampicilin-resistant bacteria). Sludge samples, from both STP, showed high concentrations of total heterotrophic bacteria (THB; 4.8-7.6 log10UFC.mL−1) and ARB (3.0-6.3 log10UFC.mL−1). Most of the isolated ampicilin- and chloramphenicol-resistant strains were identified as members of the Enterobacteriaceae family. Some of the identified species are potential pathogenic bacteria, such as Klebsiella pneumoniae, Aeromonas hydrophila, Escherichia coli, Enterococcus faecium, Salmonella spp. These results call attention to the spread of ARB, potentially pathogenic, in the environment from the final effluent (from secondary effluent) on the STP, regardless of the type of system adopted. It is evident that in order to significantly reduce the concentration of ARB in the treated effluent, it should undergo additional treatment and disinfection.

9.
Environ Sci Pollut Res Int ; 27(29): 35979-35992, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32277414

RESUMO

Upflow anaerobic sludge blanket (UASB) reactors are considered to be a sustainable and well-established technology for sewage treatment in warm climate countries. However, gases dissolved in the effluent of these reactors, CH4 and H2S in some instances, are a major drawback. These dissolved gases can be emitted into the atmosphere downstream of the anaerobic reactors, resulting in odour nuisance and, in the case of H2S, corrosion, while in the case of CH4, increasing greenhouse gas emissions with a significant loss of potentially recoverable energy. In this sense, this study aims to provide a critical review of the recent efforts to control CH4 and H2S dissolved in UASB reactor effluents, with a focus on the different available techniques. Different desorption techniques have been tested for the removal/recovery of dissolved CH4 and H2S: diffused aeration, simplified desorption chamber, packed desorption chamber, closed downflow hanging sponge reactor, membrane contactor, and vacuum desorption chamber. Other recent publications addressing the oxidation of these compounds in biological posttreatments with simultaneous nitrification/denitrification of ammonia were also discussed. Additionally, the rationale of CH4 recovery was determined by energy balance and carbon footprint approaches, and the H2S removal was examined by modelling its emission and atmospheric dispersion.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Anaerobiose , Reatores Biológicos , Metano
10.
J Environ Manage ; 242: 465-473, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31071623

RESUMO

There is an enormous deficit in sanitation infrastructure in most Brazilian cities. To tackle this challenge, it is crucial to conceive the new sanitation infrastructure based on sustainability principles, including an integrated approach for the management of the liquid, solid and gaseous phases. This study aimed at developing sustainable sewage treatment flowsheets for different scales and regional scenarios in the state of Minas Gerais. Two watersheds were chosen as study areas, due to their remarkable regional importance and socioeconomic and environmental diversity, i.e. Rio das Velhas and Jequitaí-Pacuí. Currently available processes for sewage treatment and resources recovery were assessed based on: literature review and benchmarking of operational practices, experiences reported by sanitation companies, techno-economic feasibility of resource recovery and carbon footprint assessment of anaerobic-based technologies. Social acceptance was also considered. A total of 15 sustainable flowsheets were proposed, comprising passive/natural systems (stabilization ponds, constructed wetlands and controlled land application), anaerobic process combined with natural systems (UASB reactors followed by controlled land application, constructed wetlands or polishing ponds) and compact anaerobic/aerobic systems (UASB reactors followed by activated sludge or trickling filters). Processes selected for small-scale sewage treatment plants (STPs) (people-equivalent - PE < 10,000 inhab.) intended to be integrated into local communities and economic activities. Large-scale STPs (especially those with PE > 100,000 inhab.) were conceived as industries, where a wide range of resources (e.g. sand for non-structural concrete, biogas for electricity, sludge for thermal energy) could be recovered from the influent sewage. Results obtained from the current study could serve as support for decision-making on the planning and implementation of new sustainable sanitation solutions in the state of Minas Gerais and possibly in other regions of Brazil and other developing countries.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Reatores Biológicos , Brasil , Carbono , Cidades
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA