Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 115(13): 3531-7, 2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21405074

RESUMO

This ab initio study was performed to better understand the correlation between intercalated water molecules and layered double hydroxides (LDH), as well as the changes that occur by the dehydration process of Zn-Al hydrotalcite-like compounds containing Cl⁻ and CO3²â» counterions. We have verified that the strong interaction among intercalated water molecules, cointercalated anions, and OH groups from hydroxyl layers is reflected in the thermal stability of these compounds. The Zn(2/3)Al(1/3)(OH)2Cl(1/3)·2/3H2O hydrotalcite loses all the intercalated water molecules around 125 °C, while the Zn(2/3)Al(1/3)(OH)2(CO3)(1/6)·4/6H2O compound dehydrates at about 175 °C. These values are in good agreement with experimental data. The interlayer interactions were discussed on the basis of electron density difference analyses. Our calculation shows that the electron density in the interlayer region decreases during the dehydration process, inducing the migration of the Cl⁻ anion and the displacement of the hydroxyl layer from adjacent layers. Changes in these compound structures occur to recover part of the hydrogen bonds broken due to the removal of water molecules. It was observed that the chloride ion had initially a lower Löwdin charge (Cl(-0.43)), which has increased its absolute value (Cl(-0.58)) after the water molecules removal, while the charges on carbonate ions remain invariant, leading to the conclusion that the Cl⁻ anion can be more influenced by the amount of water molecules in the interlayer space than the CO3²â» anion in hydrotalcite-like compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA