Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxicol In Vitro ; 48: 121-127, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29337250

RESUMO

Stromal-interaction molecule 1 (STIM1)-mediated store-operated Ca2+ entry (SOCE) plays a key role in mediating cardiomyocyte hypertrophy, both in vitro and in vivo. Moreover, there is growing support for the contribution of SOCE to the Ca2+ overload associated with ischemia/reperfusion injury. Therefore, STIM1 inhibition is proposed as a novel target for controlling both hypertrophy and ischemia/reperfusion-induced Ca2+ overload. Our aim was to evaluate the effect of ML9, a STIM1 inhibitor, on cardiomyocyte viability. ML9 was found to induce cell death in cultured neonatal rat cardiomyocytes. Caspase-3 activation, apoptotic index and release of the necrosis marker lactate dehydrogenase to the extracellular medium were evaluated. ML9-induced cardiomyocyte death was not associated with increased intracellular ROS or decreased ATP levels. Moreover, treatment with ML9 significantly increased levels of the autophagy marker LC3-II, without altering Beclin1 or p62 protein levels. However, treatment with ML9 followed by bafilomycin-A1 did not produce further increases in LC3-II content. Furthermore, treatment with ML9 resulted in decreased LysoTracker® Green staining. Collectively, these data suggest that ML9-induced cardiomyocyte death is triggered by a ML9-dependent disruption of autophagic flux due to lysosomal dysfunction.


Assuntos
Autofagia/efeitos dos fármacos , Azepinas/toxicidade , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Molécula 1 de Interação Estromal/antagonistas & inibidores , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Células Cultivadas , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Necrose/induzido quimicamente , Necrose/patologia , Ratos , Espécies Reativas de Oxigênio/metabolismo
2.
Biochim Biophys Acta Mol Cell Res ; 1865(2): 289-296, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29126879

RESUMO

The L-type calcium channel (LTCC) is an important determinant of cardiac contractility. Therefore, changes in LTCC activity or protein levels could be expected to affect cardiac function. Several studies describing LTCC regulation are available, but only a few examine LTCC protein stability. Polycystin-1 (PC1) is a mechanosensor that regulates heart contractility and is involved in mechanical stretch-induced cardiac hypertrophy. PC1 was originally described as an unconventional Gi/o protein-coupled receptor in renal cells. We recently reported that PC1 regulates LTCC stability in cardiomyocytes under stress; however, the mechanism underlying this effect remains unknown. Here, we use cultured neonatal rat ventricular myocytes and hypo-osmotic stress (HS) to model mechanical stretch. The model shows that the Cavß2 subunit is necessary for LTCC stabilization in cardiomyocytes during mechanical stretch, acting through an AKT-dependent mechanism. Our data also shows that AKT activation depends on the G protein-coupled receptor activity of PC1, specifically its G protein-binding domain, and the associated Gßγ subunit of a heterotrimeric Gi/o protein. In fact, over-expression of the human PC1 C-terminal mutant lacking the G protein-binding domain blunted the AKT activation-induced increase in Cav1.2 protein in cardiomyocytes. These findings provide novel evidence that PC1 is involved in the regulation of cardiac LTCCs through a Gißγ-AKT-Cavß2 pathway, suggesting a new mechanism for regulation of cardiac function.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Estresse Mecânico , Canais de Cátion TRPP/metabolismo , Animais , Canais de Cálcio Tipo L/genética , Proteínas Proto-Oncogênicas c-akt/genética , Ratos , Canais de Cátion TRPP/genética
3.
Curr Mol Med ; 13(2): 317-29, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23228132

RESUMO

The endoplasmic reticulum has a central role in biosynthesis of a variety of proteins and lipids. Mitochondria generate ATP, synthesize and process numerous metabolites, and are key regulators of cell death. The architectures of endoplasmic reticulum and mitochondria change continually via the process of membrane fusion, fission, elongation, degradation, and renewal. These structural changes correlate with important changes in organellar function. Both organelles are capable of moving along the cytoskeleton, thus changing their cellular distribution. Numerous studies have demonstrated coordination and communication between mitochondria and endoplasmic reticulum. A focal point for these interactions is a zone of close contact between them known as the mitochondrial-associated endoplasmic reticulum membrane (MAM), which serves as a signaling juncture that facilitates calcium and lipid transfer between organelles. Here we review the emerging data on how communication between endoplasmic reticulum and mitochondria can modulate organelle function and determine cellular fate.


Assuntos
Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Transdução de Sinais/fisiologia , Animais , Morte Celular , Sobrevivência Celular , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Retículo Endoplasmático/ultraestrutura , Humanos , Fusão de Membrana/fisiologia , Mitocôndrias/ultraestrutura , Renovação Mitocondrial/fisiologia , Tamanho das Organelas
4.
Cell Death Dis ; 2: e244, 2011 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-22190003

RESUMO

Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide. Although treatments have improved, development of novel therapies for patients with CVD remains a major research goal. Apoptosis, necrosis, and autophagy occur in cardiac myocytes, and both gradual and acute cell death are hallmarks of cardiac pathology, including heart failure, myocardial infarction, and ischemia/reperfusion. Pharmacological and genetic inhibition of autophagy, apoptosis, or necrosis diminishes infarct size and improves cardiac function in these disorders. Here, we review recent progress in the fields of autophagy, apoptosis, and necrosis. In addition, we highlight the involvement of these mechanisms in cardiac pathology and discuss potential translational implications.


Assuntos
Apoptose , Miócitos Cardíacos/metabolismo , Autofagia , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/terapia , Humanos , Mitocôndrias/metabolismo , Miócitos Cardíacos/citologia , Necrose , Biossíntese de Proteínas , Transplante de Células-Tronco
5.
Endocrinology ; 151(10): 4665-77, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20685879

RESUMO

Intracellular calcium levels ([Ca2+]i) and glucose uptake are central to cardiomyocyte physiology, yet connections between them have not been studied. We investigated whether insulin regulates [Ca2+]i in cultured cardiomyocytes, the participating mechanisms, and their influence on glucose uptake via SLC2 family of facilitative glucose transporter 4 (GLUT4). Primary neonatal rat cardiomyocytes were preloaded with the Ca2+ fluorescent dye fluo3-acetoxymethyl ester compound (AM) and visualized by confocal microscopy. Ca2+ transport pathways were selectively targeted by chemical and molecular inhibition. Glucose uptake was assessed using [3H]2-deoxyglucose, and surface GLUT4 levels were quantified in nonpermeabilized cardiomyocytes transfected with GLUT4-myc-enhanced green fluorescent protein. Insulin elicited a fast, two-component, transient increase in [Ca2+]i. Nifedipine and ryanodine prevented only the first component. The second one was reduced by inositol-1,4,5-trisphosphate (IP3)-receptor-selective inhibitors (xestospongin C, 2 amino-ethoxydiphenylborate), by type 2 IP3 receptor knockdown via small interfering RNA or by transfected Gßγ peptidic inhibitor ßARKct. Insulin-stimulated glucose uptake was prevented by bis(2-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid-AM, 2-amino-ethoxydiphenylborate, and ßARK-ct but not by nifedipine or ryanodine. Similarly, insulin-dependent exofacial exposure of GLUT4-myc-enhanced green fluorescent protein was inhibited by bis(2-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid-AM and xestospongin C but not by nifedipine. Phosphatidylinositol 3-kinase and Akt were also required for the second phase of Ca2+ release and GLUT4 translocation. Transfected dominant-negative phosphatidylinositol 3-kinase γ inhibited the latter. In conclusion, in primary neonatal cardiomyocytes, insulin induces an important component of Ca2+ release via IP3 receptor. This component signals to glucose uptake via GLUT4, revealing a so-far unrealized contribution of IP3-sensitive Ca2+ stores to insulin action. This pathway may influence cardiac metabolism in conditions yet to be explored in adult myocardium.


Assuntos
Transportador de Glucose Tipo 4/metabolismo , Glucose/farmacocinética , Receptores de Inositol 1,4,5-Trifosfato/fisiologia , Inositol 1,4,5-Trifosfato/fisiologia , Insulina/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Células Cultivadas , Glucose/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Inositol 1,4,5-Trifosfato/farmacologia , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Miócitos Cardíacos/metabolismo , Transporte Proteico/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Regulação para Cima/efeitos dos fármacos
6.
Apoptosis ; 15(8): 887-903, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20454859

RESUMO

Hyperosmotic stress promotes rapid and pronounced apoptosis in cultured cardiomyocytes. Here, we investigated if Ca(2+) signals contribute to this response. Exposure of cardiomyocytes to sorbitol [600 mosmol (kg water)(-1)] elicited large and oscillatory intracellular Ca(2+) concentration increases. These Ca(2+) signals were inhibited by nifedipine, Cd(2+), U73122, xestospongin C and ryanodine, suggesting contributions from both Ca(2+) influx through voltage dependent L-type Ca(2+) channels plus Ca(2+) release from intracellular stores mediated by IP(3) receptors and ryanodine receptors. Hyperosmotic stress also increased mitochondrial Ca(2+) levels, promoted mitochondrial depolarization, reduced intracellular ATP content, and activated the transcriptional factor cyclic AMP responsive element binding protein (CREB), determined by increased CREB phosphorylation and electrophoretic mobility shift assays. Incubation with 1 mM EGTA to decrease extracellular [Ca(2+)] prevented cardiomyocyte apoptosis induced by hyperosmotic stress, while overexpression of an adenoviral dominant negative form of CREB abolished the cardioprotection provided by 1 mM EGTA. These results suggest that hyperosmotic stress induced by sorbitol, by increasing Ca(2+) influx and raising intracellular Ca(2+) concentration, activates Ca(2+) release from stores and causes cell death through mitochondrial function collapse. In addition, the present results suggest that the Ca(2+) increase induced by hyperosmotic stress promotes cell survival by recruiting CREB-mediated signaling. Thus, the fate of cardiomyocytes under hyperosmotic stress will depend on the balance between Ca(2+)-induced survival and death pathways.


Assuntos
Apoptose/fisiologia , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Sobrevivência Celular , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Sorbitol/farmacologia , Animais , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Humanos , Indicadores e Reagentes/farmacologia , Mitocôndrias/metabolismo , Miócitos Cardíacos/citologia , Pressão Osmótica , Ratos , Ratos Sprague-Dawley
7.
Arch Virol ; 152(6): 1215-21, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17334949

RESUMO

Phylogenetic analyses conducted on isolates of rabbit hemorrhagic disease virus (RHDV) from throughout the world have shown well-defined genogroups comprising representative strains of the virus and antigenic variants. In this work, we have isolated and characterized RHDV from the major epizootic that occurred in Cuba in 2004-2005. Sequence analysis of the capsid protein gene and antigenic characterization of this strain has allowed its inclusion as a member of the distinct RHDVa subtype. We also found that specific antibodies directed against RHDV reference strains bound to the Cuban isolate in a competition ELISA and inhibited virus hemagglutination in vitro. This is the second report on the molecular characterization of RHDVa circulating in the American region.


Assuntos
Vírus da Doença Hemorrágica de Coelhos/genética , Vírus da Doença Hemorrágica de Coelhos/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Antivirais/sangue , Antígenos Virais/classificação , Antígenos Virais/genética , Infecções por Caliciviridae/imunologia , Infecções por Caliciviridae/veterinária , Infecções por Caliciviridae/virologia , Cuba , Evolução Molecular , Vírus da Doença Hemorrágica de Coelhos/classificação , Vírus da Doença Hemorrágica de Coelhos/isolamento & purificação , Dados de Sequência Molecular , Filogenia , Coelhos , Homologia de Sequência de Aminoácidos , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/imunologia
9.
J Biol Inorg Chem ; 6(5-6): 517-22, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11472015

RESUMO

Thermococcus celer cells contain a single hydrogenase located in the cytoplasm, which has been purified to apparent homogeneity using three chromatographic steps: Q-Sepharose, DEAE-Fast Flow, and Sephacryl S-200. In vitro assays demonstrated that this enzyme was able to catalyze the oxidation as well as the evolution of H2. T. celer hydrogenase had an apparent MW of 155,000+/-30,000 by gel filtration. When analyzed by SDS polyacrylamide gel electrophoresis a single band of 41,000+/-2,000 was detected. Hydrogenase activity was also detected in situ in a SDS polyacrylamide gel followed by an activity staining procedure revealing a single band corresponding to a protein of apparent Mr 84,000+/-3,000. Measurements of iron and acid-labile sulfide in different preparations of T. celer hydrogenase gave values ranging from 24 to 30 g-atoms Fe/mole of protein and 24 to 36 g-atoms of acid-labile sulfide per mole of protein. Nickel is present in 1.9-2.3 atoms per mole of protein. Copper, tungsten, and molybdenum were detected in amounts lower than 0.5 g-atoms per mole of protein. T. celer hydrogenase was inactive at ambient temperature, exhibited a dramatic increase in activity above 70 degrees C, and had an optimal activity above 90 degrees C. This enzyme showed no loss of activity after incubation at 80 degrees C for 28 h, but lost 50% of its initial activity after incubation at 96 degrees C for 20 h. Hydrogenase exhibited a half-life of approximately 25 min in air. However, after treating the air-exposed sample with sodium dithionite, more than 95% of the original activity was recovered. Copper sulfate, magnesium chloride and nitrite were also inactivators of this enzyme.


Assuntos
Hidrogenase/isolamento & purificação , Hidrogenase/metabolismo , Thermococcus/enzimologia , Divisão Celular , Sulfato de Cobre/química , Eletroforese em Gel de Poliacrilamida , Estabilidade Enzimática , Hidrogênio/metabolismo , Hidrogenase/química , Cloreto de Magnésio/química , Peso Molecular , Nitritos/química , Subunidades Proteicas , Temperatura , Thermococcus/crescimento & desenvolvimento
10.
J Microbiol Methods ; 38(1-2): 169-75, 1999 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-10520597

RESUMO

Growth medium components and cultivation conditions for the extremely thermophilic Archaea Thermococcus celer and Pyrococcus woesei were optimized. A culture media based in marine water was formulated. Both Archaea demonstrated to be strictly anaerobic with optimal growth temperature of 85 degrees and 95 degrees C, respectively. Sodium sulfide, but not cysteine, was used as a sulfur and reductive capacity source. It was observed that hydrogen sulfide could be replaced by 30 microM titanium (III) nitrile acetate. The addition of elemental S(o) enhanced growth of both microorganisms, with T. celer far more sensitive than P. woesei to the absence of S(o). P. woesei utilized maltose as a carbon source, while T. celer was able to use only peptides from yeast extract, peptone and tryptone as its carbon source. Optimum carbon source concentrations were 1.25 g/L for T. celer and 5 g/L for P. woesei. Although both Archaea required peptides as a nitrogen source, the addition of ammonia chloride to a nitrogen-limited media did not stimulate growth, which suggests that neither Archaea appear to metabolize ammonia. The growth of P. woesei, but not T. celer, was stimulated considerably in the presence of iron. Co, Ni, Zn, Mo. Mn and Mg were essential trace elements needed for optimal growth of both bacteria.


Assuntos
Pyrococcus/crescimento & desenvolvimento , Thermococcus/crescimento & desenvolvimento , Técnicas Bacteriológicas/normas , Biomassa , Meios de Cultura , Hidrogênio/metabolismo , Ferro/metabolismo , Pyrococcus/metabolismo , Enxofre/metabolismo , Thermococcus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA