Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37446660

RESUMO

Graphene oxide sheets fixed over silica particles (SiGO) and their modification functionalized with C18 and endcapped (SiGO-C18ec) have been reported as sorbents for extraction and analytical columns in LC. In this study, a SiGO column was selected as the extraction column and a SiGO-C18ec as the analytical column to study the applicability and limitations of a column-switching system composed exclusively of columns packed with graphene-based sorbents. Pyriproxyfen and abamectin B1a were selected as the analytes, and orange-flavored carbonated soft drinks as the matrix. The proposed system could be successfully applied to the pyriproxyfen analysis in a concentration range between 0.5 to 25 µg/mL presenting a linearity of R2 = 0.9931 and an intra-day and inter-day accuracy of 82.2-111.4% (RSD < 13.3%) and 95.5-99.8% (RSD < 12.7%), respectively. Furthermore, the matrix composition affected the area observed for the pyriproxyfen: the higher the concentration of orange juice in the soft drink, the higher the pyriproxyfen the signal observed. Additionally, the SiGO extraction column presented a life use of 120 injections for this matrix. In contrast, the proposed system could not apply to the analysis of abamectin B1a, and the SiGO-C18ec analytical column presented significant tailing compared to a similar approach with a C18 analytical column.


Assuntos
Grafite , Dióxido de Silício , Ivermectina
2.
Foods ; 12(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36673373

RESUMO

Sample preparation is usually a complex and time-consuming procedure, which can directly affect the quality of the analysis. Recent efforts have been made to establish analytical methods involving minimal sample preparation, automatized and performed online with the analytical techniques. Online Extraction coupled with Liquid Chromatography-Mass Spectrometry (OLE-LC-MS) allows a fully connected extraction, separation, and analysis system. In this work, the lecithin profile was investigated in commercial sunflower, almonds, peanuts, and pistachio seeds to demonstrate that the concept of extraction, followed by the online analysis of the extract, could be applied to analyze this class of analytes in such complex solid matrices without a prior off-line solvent extraction step. The extraction phase gradient method was optimized. Two different analytical columns were explored, one being a conventional C18 (50 × 2.1 mm, 1.7 µm SPP) and the other a novel self-packed SIGO-C18ec (100 × 0.5, 5 µm FPP), which resulted in better separation. The analysis repeatability was investigated, and suggestions to improve it were pointed out. A characteristic ion with a m/z of 184, related to lysophosphatidylcholine structure, was used to identify the lecithin compounds. The temperature effect on the chromatograms was also explored. In short, it was found that the OLE-LC-MS approach is suitable for the analysis of lecithin compounds in seeds, being a promising alternative for lipidomics approaches in the near future.

3.
Crit Rev Anal Chem ; 53(6): 1239-1262, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34915787

RESUMO

Natural carotenoids are secondary metabolites that exhibit antioxidant, anti-inflammatory, and anti-cancer properties. These types of compounds are highly demanded by pharmaceutical, cosmetic, nutraceutical, and food industries, leading to the search for new natural sources of carotenoids. In recent years, the production of carotenoids from bacteria has become of great interest for industrial applications. In addition to carotenoids with C40-skeletons, some bacteria have the ability to synthesize characteristic carotenoids with C30-skeletons. In this regard, a great variety of methodologies for the extraction and identification of bacterial carotenoids has been reported and this is the first review that condenses most of this information. To understand the diversity of carotenoids from bacteria, we present their biosynthetic origin in order to focus on the methodologies employed in their extraction and characterization. Special emphasis has been made on high-performance liquid chromatography-mass spectrometry (HPLC-MS) for the analysis and identification of bacterial carotenoids. We end up this review showing their potential commercial use. This review is proposed as a guide for the identification of these metabolites, which are frequently reported in new bacteria strains.


Assuntos
Bactérias , Carotenoides , Carotenoides/análise , Carotenoides/química , Carotenoides/metabolismo , Bactérias/metabolismo , Antioxidantes/metabolismo , Espectrometria de Massas , Cromatografia Líquida de Alta Pressão
5.
Nutrients ; 14(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36235663

RESUMO

The fruits from the Arecaceae family, although being rich in bioactive compounds with potential benefits to health, have been underexplored. Studies on their composition, bioactive compounds, and effects of their consumption on health are also scarce. This review presents the composition of macro- and micronutrients, and bioactive compounds of fruits of the Arecaceae family such as bacaba, patawa, juçara, açaí, buriti, buritirana, and butiá. The potential use and reported effects of its consumption on health are also presented. The knowledge of these underutilized fruits is important to encourage production, commercialization, processing, and consumption. It can also stimulate their full use and improve the economy and social condition of the population where these fruits are found. Furthermore, it may help in future research on the composition, health effects, and new product development. Arecaceae fruits presented in this review are currently used as raw materials for producing beverages, candies, jams, popsicles, ice creams, energy drinks, and edible oils. The reported studies show that they are rich in phenolic compounds, carotenoids, anthocyanins, tocopherols, minerals, vitamins, amino acids, and fatty acids. Moreover, the consumption of these compounds has been associated with anti-inflammatory, antiproliferative, antiobesity, and cardioprotective effects. These fruits have potential to be used in food, pharmaceutical, and cosmetic industries. Despite their potential, some of them, such as buritirana and butiá, have been little explored and limited research has been conducted on their composition, biological effects, and applications. Therefore, more detailed investigations on the composition and mechanism of action based on in vitro and/or in vivo studies are needed for fruits from the Arecaceae family.


Assuntos
Arecaceae , Aminoácidos/análise , Antocianinas/análise , Antioxidantes/farmacologia , Arecaceae/química , Brasil , Carotenoides/análise , Ácidos Graxos/análise , Frutas/química , Promoção da Saúde , Micronutrientes/análise , Preparações Farmacêuticas/análise , Óleos de Plantas/análise , Tocoferóis/análise , Vitaminas/análise
6.
Front Nutr ; 9: 953169, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159477

RESUMO

Soybeans are mainly used for food and biodiesel production. It is estimated that soy crops worldwide will leave about 651 million metric tons of branches, leaves, pods, and roots on the ground post-harvesting in 2022/23. These by-products might serve as largely available and cheap source of high added-value metabolites, such as flavonoids, isoflavonoids, and other phenolic compounds. This work aimed to explore green approaches based on the use of pressurized and gas expanded-liquid extraction combined with natural deep eutectic solvents (NADESs) to achieve phenolic-rich extracts from soy by-products. The total phenolic and flavonoid contents of the generated extracts were quantified and compared with conventional solvents and techniques. Pressurized liquid extraction (PLE) with choline chloride/citric acid/water (1:1:11 - molar ratio) at 120°C, 100 bar, and 20 min, resulted in an optimized condition to generate phenolic and flavonoid-rich fractions of soy by-products. The individual parts of soy were extracted under these conditions, with their metabolic profile obtained by UHPLC-ESI-QToF-MS/MS and potential antioxidant properties by ROS scavenging capacity. Extracts of soy roots presented the highest antioxidant capacity (207.48 ± 40.23 mg AA/g), three times higher than soybean extracts (68.96 ± 12.30). Furthermore, Hansen solubility parameters (HSPs) were applied to select natural hydrophobic deep eutectic solvents (NaHDES) as substituents for n-heptane to defat soybeans. Extractions applying NaHDES candidates achieved a similar yield and chromatography profile (GC-QToF-MS) to n-heptane extracts.

7.
J Agric Food Chem ; 70(23): 7321-7341, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35652359

RESUMO

Soy is the major oilseed crop as soybeans are widely used to produce biofuel, food, and feed. Other parts of the plant are left on the ground after harvest. The accumulation of such by-products on the soil can cause environmental problems. This work presents for the first time a comprehensive metabolite profiling of soy by-products collected directly from the ground just after mechanical harvesting. A two-liquid-phase extraction using n-heptane and EtOH-H2O 7:3 (v/v) provided extracts with complete characterization by gas chromatography and ultra-high-performance liquid chromatography both coupled to time-of-flight mass spectrometry. A total of 146 metabolites, including flavones, flavonols, isoflavonoids, fatty acids, steroids, mono-, sesqui-, di-, and triterpenoids, were tentatively identified in soy by-products and soybeans. These proved to be sources of a wide range of bioactive metabolites, thus suggesting that they could be valorized while reducing potential environmental damage in line with a circular economy model.


Assuntos
Fabaceae , Glycine max , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Extração Líquido-Líquido/métodos , Espectrometria de Massas/métodos
8.
J Chromatogr A ; 1675: 463147, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35640448

RESUMO

This work reports the application of Gas Expanded Liquid (GXL) extraction to concentrate the flavonolignan fraction (silymarin) and taxifolin from Silybum marianum seeds, which have proven to be highly valuable health-promoting compounds. GXL using green solvents was used to isolate silymarin with the objective of replacing conventional methods. In one hand, the effect of different compositions of solvents, aqueous ethanol (20%, 50% or 80% (v/v)) at different CO2/liquid (25, 50 and 75%) ratios, on the GXL extraction was investigated. The obtained extracts have been chemically and functionally characterized by means of UHPLC-ESI-MS/MS (triple quadrupole) and in-vitro assays such as anti-inflammatory, anti-cholinergic and antioxidant. Results revealed that the operating conditions influenced the extraction yield, the total phenolic content and the presence of the target compounds. The best obtained yield was 55.97% using a ternary mixture of solvents composed of CO2:EtOH:H2O (25:60:15) at 40 °C and 9 MPa in 160 min. Furthermore, the results showed that obtained extracts had significant antioxidant and anti-inflammatory activities (with best IC50 value of 8.80 µg/mL and 28.52 µg/mL, respectively) but a moderate anti-cholinesterase activity (with best IC50 value of 125.09 µg/mL). Otherwise, the concentration of silymarin compounds in extract can go up to 59.6% using the present one-step extraction method without further purification, being silybinA+B the predominant identified compound, achieving value of 545.73 (mg silymarin/g of extract). The obtained results demonstrate the exceptional potential of GXL to extract high-added values molecules under sustainable conditions from different matrices.


Assuntos
Silybum marianum , Silimarina , Argélia , Antioxidantes/análise , Dióxido de Carbono/análise , Cromatografia Líquida de Alta Pressão/métodos , Etanol/análise , Flavonoides/análise , Silybum marianum/química , Extratos Vegetais/química , Sementes/química , Solventes/química , Espectrometria de Massas em Tandem
9.
Foods ; 11(10)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35627087

RESUMO

The sinami palm (Oenocarpus mapora H. Karst) is a plant from the South American Amazonia that has great potential for industrial applications in the development of functional foods, nutraceuticals and cosmeceuticals. In this manuscript, the physicochemical properties, total polyphenol content and antioxidant activity of sinami oil that was obtained using four extraction systems, namely expeller press extraction (EPE), cold press extraction (CPE), ultrasound-assisted extraction (UAE) and supercritical fluid extraction (SFE), were studied and compared. The oxidative stability (OSI) was statistically non-significant in EPE and SFE. The chromatic properties (CIELab) were influenced by the extraction methods and SFE presented high values of L* and a lower content of plant pigments. Ultrasound-assisted extraction showed a higher content of polyphenols and higher antioxidant activity. Different analyses for the evaluation of the physicochemical properties, the content of total polyphenols and antioxidant activity were used to classify sinami oil according to chemometrics using principal component analysis (PCA). For example, the sinami oil that was obtained using each extraction method was in a different part of the plot. In summary, sinami oil is an excellent resource for plant pigments. Additionally, the information that was obtained on the quality parameters in this study provided a good foundation for further studies on the characterization of major and minor compounds.

10.
Food Chem X ; 12: 100140, 2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-34746747

RESUMO

Pacová (Renealmia petasites Gagnep.) is a Brazilian native plant, usually cultivated in south regions of the country. Pacová was previously reported concerning their possible health benefits, mostly from folk medicine. However, only few works relates the health benefits with the composition of the fruit parts. In this context, this work aimed to bring, for the first time in literature, the chemical characterization in respect to lipid and terpene composition of R. petasites oilseed, performed by three different extraction methods (supercritical fluid extraction (SFE) with CO2, Soxhlet with petroleum ether (SOX), and maceration with hexane (MAC)). SFE was most selective for MUFAs, PUFAs, sesqui- and diterpenes. The main terpene identified in all extracts was 2-carene. The extracts presented poor AChE inhibition, and SOX presented potential inhibitory effect against lipoxygenase activity. Overall, R. petasites oilseed is a natural source of terpenes and their potential health benefits are highly encouraged to be investigated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA