Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochimie ; 211: 122-130, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36963559

RESUMO

Loxosceles spider envenomation results in dermonecrosis, principally due to phospholipases D (PLDs) present in the venom. These enzymes have a strongly conserved sequence, 273ATXXDNPW280, in the C-terminal region (SMD-tail) that make contact with ß-sheets of the TIM barrel, in which the amino acids Asp277 and Trp280 establish the energetically strongest contacts. The SMD-tail is conserved in PLDs from different species but absent in the non-toxic PLD ancestral glycerophosphodiester phosphodiesterases (GDPDs). This work aims to understand the role of the C-terminal region in the structural stability and/or function of phospholipases D. Through site-directed mutagenesis of the rLiD1 protein (recombinant Loxosceles intermedia dermonecrotic protein 1), we produced two mutants: rLiD1D277A and rLiD1W280A (both with sphingomyelinase activity), in which Asp277 and Trp280 were replaced by alanine. rLiD1D277A showed similar sphingomyelinase activity but at least 2 times more dermonecrotic activity than rLiD1 (wild-type protein). Conversely, while the rLiD1W280A displayed a slight increase in sphingomyelinase activity, its biological activity was similar or lower compared to rLiD1, potentially due to its decreased thermostability and formation of amyloid aggregates. In conclusion, these new findings provide evidence that SMD-tail mutants impact the structure and function of these proteins and point out that residues outside the active site can even increase the function of these enzymes.


Assuntos
Fosfolipase D , Venenos de Aranha , Aranhas , Animais , Fosfolipase D/genética , Fosfolipase D/química , Fosfolipase D/metabolismo , Domínio Catalítico , Esfingomielina Fosfodiesterase , Diester Fosfórico Hidrolases/genética , Mutação , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Aranhas/genética , Venenos de Aranha/genética , Venenos de Aranha/química
2.
Biochemistry ; 62(1): 35-43, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36535020

RESUMO

The gene encoding the p53 tumor suppressor protein is the most frequently mutated oncogene in cancer patients; yet, generalized strategies for rescuing the function of different p53 mutants remain elusive. This work investigates factors that may contribute to the low inherent stability of the wild-type p53 core domain (p53C) and structurally compromised Y220C mutant. Pressure-induced unfolding of p53C was compared to p63C, the p53 family member with the highest stability, the engineered superstable p53C hexamutant (p53C HM), and lower stability p53C Y220C cancer-associated mutant. The following pressure unfolding values (P50% bar) were obtained: p53C 3346, p53C Y220C 2217, p53C HM 3943, and p63C 4326. Molecular dynamics (MD) simulations revealed that p53C Y220C was most prone to water infiltration, followed by p53C, whereas the interiors of p53C HM and p63C remained comparably dry. A strong correlation (r2 = 0.92) between P50% and extent of interior hydration was observed. The pathways of individual water molecule entry and exit were mapped and analyzed, revealing a common route preserved across the p53 family involving a previously reported pocket, along with a novel surface cleft, both of which appear to be targetable by small molecules. Potential determinants of propensity to water incursion were assessed, including backbone hydrogen bond protection and combined sequence and structure similarity. Collectively, our results indicate that p53C has an intrinsic susceptibility to water leakage, which is exacerbated in a structural class mutant, suggesting that there may be a common avenue for rescuing p53 function.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/metabolismo , Água/metabolismo , Simulação de Dinâmica Molecular , Neoplasias/metabolismo , Fenômenos Biofísicos
3.
J Chem Inf Model ; 62(22): 5746-5761, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36343333

RESUMO

The enzyme enoyl-ACP reductase (FabI) is the limiting step of the membrane's fatty acid biosynthesis in bacteria and a druggable target for novel antibacterial agents. The FabI active form is a homotetramer, which displays the highest affinity to inhibitors. Herein, molecular dynamics studies were carried out using the structure of FabI in complex with known inhibitors to investigate their effects on tetramerization. Our results suggest that multimerization is essential for the integrity of the catalytic site and that inhibitor binding enables the multimerization by stabilizing the substrate binding loop (SBL, L:195-200) coupled with changes in the H4/5 (QR interface). We also observed that AFN-1252 (naphtpyridinone derivative) promotes unique conformational changes affecting monomer-monomer interfaces. These changes are induced by AFN-1252 interaction with key residues in the binding sites (Ala95, Tyr146, and Tyr156). In addition, the analysis of water trajectories indicated that AFN-1252 complexes allow more water molecules to enter the binding site than triclosan and MUT056399 complexes. FabI-AFN-1252 simulations show accumulation of water molecules near the Tyr146/147 pocket, which can become a hotspot to the design of novel FabI inhibitors.


Assuntos
Aquaporinas , Triclosan , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/química , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Água/metabolismo , Inibidores Enzimáticos/farmacologia
4.
J Chem Theory Comput ; 17(7): 4262-4273, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34142828

RESUMO

Free energy perturbation (FEP) calculations are now routinely used in drug discovery to estimate the relative FEB (RFEB) of small molecules to a biomolecular target of interest. Using enhanced sampling can improve the correlation between predictions and experimental data, especially in systems with conformational changes. Due to the large number of perturbations required in drug discovery campaigns, the manual setup of FEP calculations is no longer viable. Here, we introduce PyAutoFEP, a flexible and open-source tool to aid the setup of RFEB FEP. PyAutoFEP is written in Python3, and automates the generation of perturbation maps, dual topologies, system building and molecular dynamics (MD), and analysis. PyAutoFEP supports multiple force fields, incorporates replica exchange with solute tempering (REST) and replica exchange with solute scaling (REST2) enhanced sampling methods, and allows flexible λ values along perturbation windows. To validate PyAutoFEP, it was applied to a set of 14 Farnesoid X receptor ligands, a system included in the drug design data resource grand challenge 2. An 88% mean correct sign prediction was achieved, and 75% of the predictions had an error below 1.5 kcal/mol. Results using Amber03/GAFF, CHARMM36m/CGenFF, and OPLS-AA/M/LigParGen had Pearson's r values of 0.71 ± 0.13, 0.30 ± 0.27, and 0.66 ± 0.20, respectively. The Amber03/GAFF and OPLS-AA/M/LigParGen results were on par with the top grand challenge 2 submissions. Applying REST2 improved the results using CHARMM36m/CGenFF (Pearson's r = 0.43 ± 0.21) but had little impact on the other force fields. CHARMM36-YF and CHARMM36-WYF modifications did not yield improved predictions compared to CHARMM36m. Finally, we estimated the probability of finding a molecule 1 pKi better than a lead when using PyAutoFEP to screen 10 or 100 analogues. The probabilities, when compared to random sampling, increased up to sevenfold when 100 molecules were to be screened, suggesting that PyAutoFEP would likely be useful for lead optimization. PyAutoFEP is available on GitHub at https://github.com/lmmpf/PyAutoFEP.

5.
Biochim Biophys Acta Gen Subj ; 1865(9): 129949, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34139289

RESUMO

BACKGROUND: The N-terminal domain of Tetracenomycin aromatase/cyclase (TcmN), an enzyme derived from Streptomyces glaucescens, is involved in polyketide cyclization, aromatization, and folding. Polyketides are a diverse class of secondary metabolites produced by certain groups of bacteria, fungi, and plants with various pharmaceutical applications. Examples include antibiotics, such as tetracycline, and anticancer drugs, such as doxorubicin. Because TcmN is a promising enzyme for in vitro production of polyketides, it is important to identify conditions that enhance its thermal resistance and optimize its function. METHODS: TcmN unfolding, stability, and dynamics were evaluated by fluorescence spectroscopy, circular dichroism, nuclear magnetic resonance 15N relaxation experiments, and microsecond molecular dynamics (MD) simulations. RESULTS: TcmN thermal resistance was enhanced at low protein and high salt concentrations, was pH-dependent, and denaturation was irreversible. Conformational dynamics on the µs-ms timescale were detected for residues in the substrate-binding cavity, and two predominant conformers representing opened and closed cavity states were observed in the MD simulations. CONCLUSION: Based on the results, a mechanism was proposed in which the thermodynamics and kinetics of the TcmN conformational equilibrium modulate enzyme function by favoring ligand binding and avoiding aggregation. GENERAL SIGNIFICANCE: Understanding the principles underlying TcmN stability and dynamics may help in designing mutants with optimal properties for biotechnological applications.


Assuntos
Proteínas de Bactérias/metabolismo , Complexos Multienzimáticos/metabolismo , Policetídeos/metabolismo , Streptomyces/enzimologia , Proteínas de Bactérias/química , Sítios de Ligação , Modelos Moleculares , Estrutura Molecular , Complexos Multienzimáticos/química , Policetídeos/química , Agregados Proteicos
6.
J Mol Graph Model ; 106: 107906, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33848948

RESUMO

Homologous proteins are often compared by pairwise sequence alignment, and structure superposition if the atomic coordinates are available. Unification of sequence and structure data is an important task in structural biology. Here, we present the Sequence Similarity 3D (SS3D) method of integrating sequence and structure information. SS3D is a distance and substitution matrix-based method for straightforward visualization of regions of similarity and difference between homologous proteins. This work details the SS3D approach, and demonstrates its utility through case studies comparing members of several protein families. The examples show that SS3D can effectively highlight biologically important regions of similarity and dissimilarity. We anticipate that the method will be useful for numerous structural biology applications, including, but not limited to, studies of binding specificity, structure-function relationships, and evolutionary pathways. SS3D is available with a manual and tutorial at https://github.com/0x462e41/SS3D/.


Assuntos
Algoritmos , Proteínas , Humanos , Proteínas/genética , Alinhamento de Sequência
7.
Biomolecules ; 10(4)2020 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-32260447

RESUMO

Despite being referred to as the guardian of the genome, when impacted by mutations, p53 can lose its protective functions and become a renegade. The malignant transformation of p53 occurs on multiple levels, such as altered DNA binding properties, acquisition of novel cellular partners, or associating into different oligomeric states. The consequences of these transformations can be catastrophic. Ongoing studies have implicated different oligomeric p53 species as having a central role in cancer biology; however, the correlation between p53 oligomerization status and oncogenic activities in cancer progression remains an open conundrum. In this review, we summarize the roles of different p53 oligomeric states in cancer and discuss potential research directions for overcoming aberrant p53 function associated with them. We address how misfolding and prion-like amyloid aggregation of p53 seem to play a crucial role in cancer development. The misfolded and aggregated states of mutant p53 are prospective targets for the development of novel therapeutic strategies against tumoral diseases.


Assuntos
Neoplasias/metabolismo , Agregados Proteicos , Multimerização Proteica , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo , Animais , Humanos , Estrutura Quaternária de Proteína
8.
Biochem J ; 477(1): 111-120, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31841126

RESUMO

Aggregation is the cause of numerous protein conformation diseases. A common facet of these maladies is the transition of a protein from its functional native state into higher order forms, such as oligomers and amyloid fibrils. p53 is an essential tumor suppressor that is prone to such conformational transitions, resulting in its compromised ability to avert cancer. This work explores the biophysical properties of early-, mid-, and late-stage p53 core domain (p53C) aggregates. Atomistic and coarse-grained molecular dynamics (MD) simulations suggest that early- and mid-stage p53C aggregates have a polymorphic topology of antiparallel and parallel ß-sheets that localize to the core amyloidogenic sequence. Both topologies involve similar extents of interstrand mainchain hydrogen bonding, while sidechain interactions could play a role in regulating strand orientation. The free energy difference between the antiparallel and parallel states was within statistical uncertainty. Negative stain electron microscopy of mature fibrils shows a wide distribution of fiber widths, indicating that polymorphism may extend to the quaternary structure level. Circular dichroism of the fibrils was indicative of ß-sheet rich structures in atypical conformations. The Raman spectrum of aggregated p53C was consistent with a mixture of arranged ß-sheets and heterogeneous structural elements, which is compatible with the MD findings of an ordered ß-sheet nucleus flanked by disordered structure. Structural polymorphism is a common property of amyloids; however, because certain polymorphs of the same protein can be more harmful than others, going forward it will be pertinent to establish correlations between p53C aggregate structure and pathology.


Assuntos
Agregados Proteicos , Agregação Patológica de Proteínas/metabolismo , Proteína Supressora de Tumor p53/química , Amiloide/metabolismo , Fenômenos Biofísicos , Humanos , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Conformação Proteica em Folha beta , Domínios Proteicos , Proteína Supressora de Tumor p53/metabolismo
9.
J Biol Chem ; 293(29): 11374-11387, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-29853637

RESUMO

The functionality of the tumor suppressor p53 is altered in more than 50% of human cancers, and many individuals with cancer exhibit amyloid-like buildups of aggregated p53. An understanding of what triggers the pathogenic amyloid conversion of p53 is required for the further development of cancer therapies. Here, perturbation of the p53 core domain (p53C) with subdenaturing concentrations of guanidine hydrochloride and high hydrostatic pressure revealed native-like molten globule (MG) states, a subset of which were highly prone to amyloidogenic aggregation. We found that MG conformers of p53C, probably representing population-weighted averages of multiple states, have different volumetric properties, as determined by pressure perturbation and size-exclusion chromatography. We also found that they bind the fluorescent dye 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (bis-ANS) and have a native-like tertiary structure that occludes the single Trp residue in p53. Fluorescence experiments revealed conformational changes of the single Trp and Tyr residues before p53 unfolding and the presence of MG conformers, some of which were highly prone to aggregation. p53C exhibited marginal unfolding cooperativity, which could be modulated from unfolding to aggregation pathways with chemical or physical forces. We conclude that trapping amyloid precursor states in solution is a promising approach for understanding p53 aggregation in cancer. Our findings support the use of single-Trp fluorescence as a probe for evaluating p53 stability, effects of mutations, and the efficacy of therapeutics designed to stabilize p53.


Assuntos
Neoplasias/metabolismo , Agregação Patológica de Proteínas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Humanos , Modelos Moleculares , Agregados Proteicos , Conformação Proteica , Desnaturação Proteica , Domínios Proteicos , Dobramento de Proteína , Estabilidade Proteica , Termodinâmica , Proteína Supressora de Tumor p53/química
10.
J Comput Aided Mol Des ; 32(5): 591-605, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29564808

RESUMO

Chagas disease remains a major health problem in South America, and throughout the world. The two drugs clinically available for its treatment have limited efficacy and cause serious adverse effects. Cruzain is an established therapeutic target of Trypanosoma cruzi, the protozoan that causes Chagas disease. Our group recently identified a competitive cruzain inhibitor (compound 1) with an IC50 = 15 µM that is also more synthetically accessible than the previously reported lead, compound 2. Prior studies, however, did not propose a binding mode for compound 1, hindering understanding of the structure-activity relationship and optimization. Here, the cruzain binding mode of compound 1 was investigated using docking, molecular dynamics (MD) simulations with ab initio derived parameters, ab initio calculations, and MM/PBSA. Two ligand protonation states and four binding poses were evaluated. A careful ligand parameterization method was employed to derive more physically meaningful parameters than those obtained by automated tools. The poses of unprotonated 1 were unstable in MD, showing large conformational changes and diffusing away from the binding site, whereas the protonated form showed higher stability and interaction with negatively charged residues Asp161 and Cys25. MM/PBSA also suggested that these two residues contribute favorably to binding of compound 1. By combining results from MD, ab initio calculations, and MM/PBSA, a binding mode of 1 is proposed. The results also provide insights for further optimization of 1, an interesting lead compound for the development of new cruzain inhibitors.


Assuntos
Inibidores de Cisteína Proteinase/química , Modelos Moleculares , Proteínas de Protozoários/antagonistas & inibidores , Quinolinas/química , Cisteína Endopeptidases , Desenho de Fármacos , Ligantes , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA