Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Environ Res ; 214(Pt 2): 113869, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35820656

RESUMO

Traditional cooking with solid fuels (biomass, animal dung, charcoals, coal) creates household air pollution that leads to millions of premature deaths and disability worldwide each year. Exposure to household air pollution is highest in low- and middle-income countries. Using data from a stepped-wedge randomized controlled trial of a cookstove intervention among 230 households in Honduras, we analyzed the impact of household and personal variables on repeated 24-h measurements of fine particulate matter (PM2.5) and black carbon (BC) exposure. Six measurements were collected approximately six-months apart over the course of the three-year study. Multivariable mixed models explained 37% of variation in personal PM2.5 exposure and 49% of variation in kitchen PM2.5 concentrations. Additionally, multivariable models explained 37% and 47% of variation in personal and kitchen BC concentrations, respectively. Stove type, season, presence of electricity, primary stove location, kitchen enclosure type, stove use time, and presence of kerosene for lighting were all associated with differences in geometric mean exposures. Stove type explained the most variability of the included variables. In future studies of household air pollution, tracking the cooking behaviors and daily activities of participants, including outdoor exposures, may explain exposure variation beyond the household and personal variables considered here.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar em Ambientes Fechados/análise , Animais , Carbono , Culinária , Monitoramento Ambiental , Honduras , Humanos , Material Particulado/análise , População Rural , Fuligem
2.
Int J Hyg Environ Health ; 241: 113949, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35259686

RESUMO

Household air pollution from solid fuel combustion was estimated to cause 2.31 million deaths worldwide in 2019; cardiovascular disease is a substantial contributor to the global burden. We evaluated the cross-sectional association between household air pollution (24-h gravimetric kitchen and personal particulate matter (PM2.5) and black carbon (BC)) and C-reactive protein (CRP) measured in dried blood spots among 107 women in rural Honduras using wood-burning traditional or Justa (an engineered combustion chamber) stoves. A suite of 6 additional markers of systemic injury and inflammation were considered in secondary analyses. We adjusted for potential confounders and assessed effect modification of several cardiovascular-disease risk factors. The median (25th, 75th percentiles) 24-h-average personal PM2.5 concentration was 115 µg/m3 (65,154 µg/m3) for traditional stove users and 52 µg/m3 (39, 81 µg/m3) for Justa stove users; kitchen PM2.5 and BC had similar patterns. Higher concentrations of PM2.5 and BC were associated with higher levels of CRP (e.g., a 25% increase in personal PM2.5 was associated with a 10.5% increase in CRP [95% CI: 1.2-20.6]). In secondary analyses, results were generally consistent with a null association. Evidence for effect modification between pollutant measures and four different cardiovascular risk factors (e.g., high blood pressure) was inconsistent. These results support the growing evidence linking household air pollution and cardiovascular disease.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar em Ambientes Fechados/análise , Proteína C-Reativa , Culinária/métodos , Estudos Transversais , Feminino , Honduras/epidemiologia , Humanos , Material Particulado/análise , Madeira/análise , Madeira/química
3.
Environ Sci Technol Lett ; 9(6): 538-542, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38037640

RESUMO

Introduction: Household air pollution from cooking-related biomass combustion remains a leading risk factor for global health. Black carbon (BC) is an important component of particulate matter (PM) in household air pollution. We evaluated the impact of the engineered, wood-burning Justa stove intervention on BC concentrations. Methods: We conducted a 3-year stepped-wedge randomized controlled trial with 6 repeated visits among 230 female primary cooks in rural Honduras. Participants used traditional stoves at baseline and were randomized to receive the Justa after visit 2 or after visit 4. At each visit, we measured 24-hour gravimetric personal and kitchen fine PM (PM2.5) concentrations and estimated BC mass concentrations (Sootscan Transmissometer). We conducted intent-to-treat analyses using linear mixed models with natural log-transformed 24-hour personal and kitchen BC. Results: BC concentrations were reduced for households assigned to the Justa vs. traditional stoves: e.g., personal BC geometric mean (GSD), 3.6 µg/m3 (6.4) vs. 11.5 µg/m3 (4.6), respectively. Following the intervention, we observed 53% (95% CI: 35-65%) lower geometric mean personal BC concentrations and 76% (95% CI: 66-83%) lower geometric mean kitchen BC concentrations. Conclusions: The Justa stove intervention substantially reduced BC concentrations, mitigating household air pollution and potentially benefitting human and climate health.

4.
Sci Total Environ ; 767: 144369, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33429278

RESUMO

TRIAL DESIGN: We evaluated the impact of a biomass stove intervention on fine particulate matter (PM2.5) concentrations using an individual-level, stepped-wedge randomized trial. METHODS: We enrolled 230 women in rural Honduran households using traditional biomass stoves and randomly allocated them to one of two study arms. The Justa stove, the study intervention, was locally-sourced, wood-burning, and included an engineered combustion chamber and chimney. At each of 6 visits over 3 years, we measured 24-hour gravimetric personal and kitchen PM2.5 concentrations. Half of the households received the intervention after Visit 2 and half after Visit 4. We conducted intent-to-treat analyses to evaluate the intervention effect using linear mixed models with log-transformed kitchen or personal PM2.5 (separately) as the dependent variable, adjusting for time. We also compared PM2.5 concentrations to World Health Organization (WHO) guidelines. RESULTS: Arms 1 and 2 each had 115 participants with 664 and 632 completed visits, respectively. Median 24-hour average personal PM2.5 exposures were 81 µg/m3 (25th-75th percentile: 50-141 µg/m3) for the traditional stove condition (n=622) and 43 µg/m3 (25th-75th percentile: 27-73 µg/m3) for the Justa stove condition (n=585). Median 24-hour average kitchen concentrations were 178 µg/m3 (25th-75th percentile: 69-440 µg/m3; n=629) and 53 µg/m3 (25th-75th percentile: 29-103 µg/m3; n=578) for the traditional and Justa stove conditions, respectively. The Justa intervention resulted in a 32% reduction in geometric mean personal PM2.5 (95% confidence interval [CI]: 20-43%) and a 56% reduction (95% CI: 46-65%) in geometric mean kitchen PM2.5. During rainy and dry seasons, 53% and 41% of participants with the Justa intervention had 24-hour average personal PM2.5 exposures below the WHO interim target-3 guideline (37.5 µg/m3), respectively. CONCLUSION: The Justa stove intervention substantially lowered personal and kitchen PM2.5 and may be a provisional solution that is feasible for Latin American communities where cleaner fuels may not be available, affordable, or acceptable for some time. Clinicaltrials.gov: NCT02658383.


Assuntos
Poluição do Ar em Ambientes Fechados , Material Particulado , Poluição do Ar em Ambientes Fechados/análise , Culinária , Feminino , Honduras , Humanos , Material Particulado/análise , População Rural , Madeira/química
5.
Environ Health Perspect ; 128(4): 47010, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32347765

RESUMO

BACKGROUND: Biomarkers of exposure, susceptibility, and effect are fundamental for understanding environmental exposures, mechanistic pathways of effect, and monitoring early adverse outcomes. To date, no study has comprehensively evaluated a large suite and variety of biomarkers in household air pollution (HAP) studies in concert with exposure and outcome data. The Household Air Pollution Intervention Network (HAPIN) trial is a liquified petroleum gas (LPG) fuel/stove randomized intervention trial enrolling 800 pregnant women in each of four countries (i.e., Peru, Guatemala, Rwanda, and India). Their offspring will be followed from birth through 12 months of age to evaluate the role of pre- and postnatal exposure to HAP from biomass burning cookstoves in the control arm and LPG stoves in the intervention arm on growth and respiratory outcomes. In addition, up to 200 older adult women per site are being recruited in the same households to evaluate indicators of cardiopulmonary, metabolic, and cancer outcomes. OBJECTIVES: Here we describe the rationale and ultimate design of a comprehensive biomarker plan to enable us to explore more fully how exposure is related to disease outcome. METHODS: HAPIN enrollment and data collection began in May 2018 and will continue through August 2021. As a part of data collection, dried blood spot (DBS) and urine samples are being collected three times during pregnancy in pregnant women and older adult women. DBS are collected at birth for the child. DBS and urine samples are being collected from the older adult women and children three times throughout the child's first year of life. Exposure biomarkers that will be longitudinally measured in all participants include urinary hydroxy-polycyclic aromatic hydrocarbons, volatile organic chemical metabolites, metals/metalloids, levoglucosan, and cotinine. Biomarkers of effect, including inflammation, endothelial and oxidative stress biomarkers, lung cancer markers, and other clinically relevant measures will be analyzed in urine, DBS, or blood products from the older adult women. Similarly, genomic/epigenetic markers, microbiome, and metabolomics will be measured in older adult women samples. DISCUSSION: Our study design will yield a wealth of biomarker data to evaluate, in great detail, the link between exposures and health outcomes. In addition, our design is comprehensive and innovative by including cutting-edge measures such as metabolomics and epigenetics. https://doi.org/10.1289/EHP5751.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Biomarcadores/análise , Culinária/instrumentação , Exposição Materna , Gás Natural/efeitos adversos , Ensaios Clínicos Controlados Aleatórios como Assunto , Adulto , Idoso , Feminino , Guatemala , Humanos , Índia , Lactente , Recém-Nascido , Pessoa de Meia-Idade , Peru , Gravidez , Ruanda , Adulto Jovem
6.
Environ Health Perspect ; 128(4): 47009, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32347764

RESUMO

BACKGROUND: High quality personal exposure data is fundamental to understanding the health implications of household energy interventions, interpreting analyses across assigned study arms, and characterizing exposure-response relationships for household air pollution. This paper describes the exposure data collection for the Household Air Pollution Intervention Network (HAPIN), a multicountry randomized controlled trial of liquefied petroleum gas stoves and fuel among 3,200 households in India, Rwanda, Guatemala, and Peru. OBJECTIVES: The primary objectives of the exposure assessment are to estimate the exposure contrast achieved following a clean fuel intervention and to provide data for analyses of exposure-response relationships across a range of personal exposures. METHODS: Exposure measurements are being conducted over the 3-y time frame of the field study. We are measuring fine particulate matter [PM < 2.5µm in aerodynamic diameter (PM2.5)] with the Enhanced Children's MicroPEM™ (RTI International), carbon monoxide (CO) with the USB-EL-CO (Lascar Electronics), and black carbon with the OT21 transmissometer (Magee Scientific) in pregnant women, adult women, and children <1 year of age, primarily via multiple 24-h personal assessments (three, six, and three measurements, respectively) over the course of the 18-month follow-up period using lightweight monitors. For children we are using an indirect measurement approach, combining data from area monitors and locator devices worn by the child. For a subsample (up to 10%) of the study population, we are doubling the frequency of measurements in order to estimate the accuracy of subject-specific typical exposure estimates. In addition, we are conducting ambient air monitoring to help characterize potential contributions of PM2.5 exposure from background concentration. Stove use monitors (Geocene) are being used to assess compliance with the intervention, given that stove stacking (use of traditional stoves in addition to the intervention gas stove) may occur. CONCLUSIONS: The tools and approaches being used for HAPIN to estimate personal exposures build on previous efforts and take advantage of new technologies. In addition to providing key personal exposure data for this study, we hope the application and learnings from our exposure assessment will help inform future efforts to characterize exposure to household air pollution and for other contexts. https://doi.org/10.1289/EHP6422.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Culinária/instrumentação , Exposição Materna , Gás Natural/efeitos adversos , Material Particulado/análise , Ensaios Clínicos Controlados Aleatórios como Assunto , Adulto , Idoso , Monóxido de Carbono/análise , Feminino , Guatemala , Humanos , Índia , Lactente , Recém-Nascido , Pessoa de Meia-Idade , Peru , Gravidez , Ruanda , Fuligem/análise , Adulto Jovem
7.
Environ Health Perspect ; 128(4): 47008, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32347766

RESUMO

BACKGROUND: Globally, nearly 3 billion people rely on solid fuels for cooking and heating, the vast majority residing in low- and middle-income countries (LMICs). The resulting household air pollution (HAP) is a leading environmental risk factor, accounting for an estimated 1.6 million premature deaths annually. Previous interventions of cleaner stoves have often failed to reduce exposure to levels that produce meaningful health improvements. There have been no multicountry field trials with liquefied petroleum gas (LPG) stoves, likely the cleanest scalable intervention. OBJECTIVE: This paper describes the design and methods of an ongoing randomized controlled trial (RCT) of LPG stove and fuel distribution in 3,200 households in 4 LMICs (India, Guatemala, Peru, and Rwanda). METHODS: We are enrolling 800 pregnant women at each of the 4 international research centers from households using biomass fuels. We are randomly assigning households to receive LPG stoves, an 18-month supply of free LPG, and behavioral reinforcements to the control arm. The mother is being followed along with her child until the child is 1 year old. Older adult women (40 to <80 years of age) living in the same households are also enrolled and followed during the same period. Primary health outcomes are low birth weight, severe pneumonia incidence, stunting in the child, and high blood pressure (BP) in the older adult woman. Secondary health outcomes are also being assessed. We are assessing stove and fuel use, conducting repeated personal and kitchen exposure assessments of fine particulate matter with aerodynamic diameter ≤2.5µm (PM2.5), carbon monoxide (CO), and black carbon (BC), and collecting dried blood spots (DBS) and urinary samples for biomarker analysis. Enrollment and data collection began in May 2018 and will continue through August 2021. The trial is registered with ClinicalTrials.gov (NCT02944682). CONCLUSIONS: This study will provide evidence to inform national and global policies on scaling up LPG stove use among vulnerable populations. https://doi.org/10.1289/EHP6407.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Culinária/instrumentação , Gás Natural/efeitos adversos , Material Particulado/análise , Ensaios Clínicos Controlados Aleatórios como Assunto , Adulto , Idoso , Feminino , Guatemala , Humanos , Índia , Lactente , Recém-Nascido , Pessoa de Meia-Idade , Peru , Gravidez , Ruanda , Adulto Jovem
8.
Indoor Air ; 30(1): 24-30, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31539172

RESUMO

Household air pollution (HAP) is estimated to be an important risk factor for cardiovascular disease, but little clinical evidence exists and collecting biomarkers of disease risk is difficult in low-resource settings. Among 54 Nicaraguan women with woodburning cookstoves, we evaluated cross-sectional associations between 48-hour measures of HAP (eg, fine particulate matter, PM2.5 ) and C-reactive protein (CRP) via dried blood spots; secondary analyses included seven additional biomarkers of systemic injury and inflammation. We conducted sub-studies to calculate the intraclass correlation coefficient (ICC) in biomarkers collected over four consecutive days in Nicaragua and to assess the validity of measuring biomarkers in dried blood by calculating the correlation with paired venous-drawn samples in Colorado. Measures of HAP were associated with CRP (eg, a 25% increase in indoor PM2.5 was associated with a 7.4% increase in CRP [95% confidence interval: 0.7, 14.5]). Most of the variability in CRP concentrations over the 4-day period was between-person (ICC: 0.88), and CRP concentrations were highly correlated between paired dried blood and venous-drawn serum (Spearman ρ = .96). Results for secondary biomarkers were primarily consistent with null associations, and the sub-study ICCs and correlations were lower. Assessing CRP via dried blood spots provides a feasible approach to elucidate the association between HAP and cardiovascular disease risk.


Assuntos
Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Proteína C-Reativa/metabolismo , Exposição por Inalação/estatística & dados numéricos , Adulto , Poluição do Ar , Biomarcadores/sangue , Colorado , Culinária/métodos , Culinária/estatística & dados numéricos , Feminino , Humanos , Exposição por Inalação/análise , Pessoa de Meia-Idade , Nicarágua
9.
Environ Pollut ; 258: 113697, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31875572

RESUMO

Cooking and heating with solid fuels results in high levels of household air pollutants, including particulate matter (PM); however, limited data exist for size fractions smaller than PM2.5 (diameter less than 2.5 µm). We collected 24-h time-resolved measurements of PM2.5 (n = 27) and particle number concentrations (PNC, average diameter 10-700 nm) (n = 44; 24 with paired PM2.5 and PNC) in homes with wood-burning traditional and Justa (i.e., with an engineered combustion chamber and chimney) cookstoves in rural Honduras. The median 24-h PM2.5 concentration (n = 27) was 79 µg/m3 (interquartile range [IQR]: 44-174 µg/m3); traditional (n = 15): 130 µg/m3 (IQR: 48-250 µg/m3); Justa (n = 12): 66 µg/m3 (IQR: 44-97 µg/m3). The median 24-h PNC (n = 44) was 8.5 × 104 particles (pt)/cm3 (IQR: 3.8 × 104-1.8 × 105 pt/cm3); traditional (n = 27): 1.3 × 105 pt/cm3 (IQR: 3.3 × 104-2.0 × 105 pt/cm3); Justa (n = 17): 6.3 × 104 pt/cm3 (IQR: 4.0 × 104-1.2 × 105 pt/cm3). The 24-h average PM2.5 and particle number concentrations were correlated for the full sample of cookstoves (n = 24, Spearman ρ: 0.83); correlations between PM2.5 and PNC were higher in traditional stove kitchens (n = 12, ρ: 0.93) than in Justa stove kitchens (n = 12, ρ: 0.67). The 24-h average concentrations of PM2.5 and PNC were also correlated with the maximum average concentrations during shorter-term averaging windows of one-, five-, 15-, and 60-min, respectively (Spearman ρ: PM2.5 [0.65, 0.85, 0.82, 0.71], PNC [0.74, 0.86, 0.88, 0.86]). Given the moderate correlations observed between 24-h PM2.5 and PNC and between 24-h and the shorter-term averaging windows within size fractions, investigators may need to consider cost-effectiveness and information gained by measuring both size fractions for the study objective. Further evaluations of other stove and fuel combinations are needed.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Culinária/instrumentação , Material Particulado/análise , Biomassa , Monitoramento Ambiental , Honduras , Humanos
10.
Indoor Air ; 30(3): 445-458, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31885107

RESUMO

Assessment of personal exposure to PM2.5 is critical for understanding intervention effectiveness and exposure-response relationships in household air pollution studies. In this pilot study, we compared PM2.5 concentrations obtained from two next-generation personal exposure monitors (the Enhanced Children MicroPEM or ECM; and the Ultrasonic Personal Air Sampler or UPAS) to those obtained with a traditional Triplex Cyclone and SKC Air Pump (a gravimetric cyclone/pump sampler). We co-located cyclone/pumps with an ECM and UPAS to obtain 24-hour kitchen concentrations and personal exposure measurements. We measured Spearmen correlations and evaluated agreement using the Bland-Altman method. We obtained 215 filters from 72 ECM and 71 UPAS co-locations. Overall, the ECM and the UPAS had similar correlation (ECM ρ = 0.91 vs UPAS ρ = 0.88) and agreement (ECM mean difference of 121.7 µg/m3 vs UPAS mean difference of 93.9 µg/m3 ) with overlapping confidence intervals when compared against the cyclone/pump. When adjusted for the limit of detection, agreement between the devices and the cyclone/pump was also similar for all samples (ECM mean difference of 68.8 µg/m3 vs UPAS mean difference of 65.4 µg/m3 ) and personal exposure samples (ECM mean difference of -3.8 µg/m3 vs UPAS mean difference of -12.9 µg/m3 ). Both the ECM and UPAS produced comparable measurements when compared against a cyclone/pump setup.


Assuntos
Poluição do Ar em Ambientes Fechados , Monitoramento Ambiental , Material Particulado/análise , Poluentes Atmosféricos , Poluição do Ar , Humanos , Peru , Projetos Piloto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA