Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros











Intervalo de ano de publicação
2.
Front Aging ; 4: 1198241, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37584054

RESUMO

Senescent cells accumulate in multicellular animals with aging, resulting in organ or tissue dysfunction. These alterations increase the incidence of a variety of illnesses, including infectious diseases, and, in certain instances, its severity. In search of a rationale for this phenomenon, we focused on the endophagocytic pathway in senescent cells. We first described the endocytic vesicle populations at different stages of maturation using confocal microscopy. There was an increase in the number of vacuoles per cell, which was partially explained by an increase in cell size. No changes in vesicle maturation or degradation capacities were determined by microscopy or Western blot assays. Also, we studied the internalization of various endophagocytic cargoes in senescent cells and observed only a decrease in the intracellular recovery of bacteria such as Staphylococcus aureus. Afterwards, we studied the intracellular traffic of S. aureus, and observed no differences in the infection between control and senescent cells. In addition we quantified the recovery of bacteria from control and senescent cells infected in the presence of several inhibitors of endophagosomal maturation, and no changes were observed. These results suggest that bacterial internalization is affected in senescent cells. Indeed, we confirmed this hypothesis by determining minor bacterial adherence and internalization by confocal microscopy. Furthermore, it is important to highlight that we found very similar results with cells from aged animals, specifically BMDMs. This alteration in senescent cells enlightens the diminished bacterial clearance and may be a factor that increases the propensity to suffer severe infectious conditions in the elderly.

3.
Heliyon ; 9(5): e15211, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37090429

RESUMO

The population that has not received a SARS-CoV-2 vaccine is at high risk for infection whereas vaccination prevents COVID-19 severe disease, hospitalization, and death. In Argentina, to date, more than 50 million doses of vaccines against SARS-CoV-2 have been administered. The three main vaccines applied are Sputnik V, Oxford-AstraZeneca, and Sinopharm. In this study, we have compared the antibody response of voluntary individuals at day 0 (first dose vaccination day) and at 21-25 days post first and second dose. Our results indicate that at 21-25 days after the administration of the first doses of Sputnik V the large majority of the people vaccinated 80% (n = 15) presented high humoral responses as determined by the measurement of IgG against the Spike protein and the Receptor Binding Domain (RBD). In the case of those vaccinated with AstraZeneca, the percentage was 80% (n = 15) whereas this value was reduced to only 25% (n = 16) in persons that received Sinopharm. However, after the second doses, most of the recipients had significant levels of antibodies. The virus neutralizing capacity of the antibodies generated was evaluated using a pseudotyped VSV-SARS-CoV2 Spike expressing eGFP and the data was analyzed by fluorescence microscopy and flow cytometry. The results indicate that a good correlation exists between the levels of IgG and the neutralizing capacity of the antibodies against the recombinant virus. Our results stand out the importance of applying the second dose of Sinopharm. Thus, the present report provides data that will contribute to decisions making about the vaccine implementation plans of action for, not only our region but our country to support the fight against the COVID-19 global pandemic.

4.
J Med Virol ; 95(2): e28584, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36794675

RESUMO

Novel adjuvants are highly desired to improve immune responses of SARS-CoV-2 vaccines. This work reports the potential of the stimulator of interferon genes (STING) agonist adjuvant, the cyclic di-adenosine monophosphate (c-di-AMP), in a SARS-CoV-2 vaccine based on the receptor binding domain (RBD). Here, mice immunized with two doses of monomeric RBD adjuvanted with c-di-AMP intramuscularly were found to exhibit stronger immune responses compared to mice vaccinated with RBD adjuvanted with aluminum hydroxide (Al(OH)3 ) or without adjuvant. After two immunizations, consistent enhancements in the magnitude of RBD-specific immunoglobulin G (IgG) antibody response were observed by RBD + c-di-AMP (mean: 15360) compared to RBD + Al(OH)3 (mean: 3280) and RBD alone (n.d.). Analysis of IgG subtypes indicated a predominantly Th1-biased immune response (IgG2c, mean: 14480; IgG2b, mean: 1040, IgG1, mean: 470) in mice vaccinated with RBD + c-di-AMP compared to a Th2-biased response in those vaccinated with RBD + Al(OH)3 (IgG2c, mean: 60; IgG2b: n.d.; IgG1, mean: 16660). In addition, the RBD + c-di-AMP group showed better neutralizing antibody responses as determined by pseudovirus neutralization assay and by plaque reduction neutralization assay with SARS-CoV-2 wild type. Moreover, the RBD + c-di-AMP vaccine promoted interferon-γ secretion of spleen cell cultures after RBD stimulation. Furthermore, evaluation of IgG-antibody titers in aged mice showed that di-AMP was able to improve RBD-immunogenicity at old age after 3 doses (mean: 4000). These data suggest that c-di-AMP improves immune responses of a SARS-CoV-2 vaccine based on RBD, and would be considered a promising option for future COVID-19 vaccines.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Camundongos , Humanos , SARS-CoV-2 , Adjuvantes Imunológicos , Imunidade Celular , Anticorpos Neutralizantes , Adjuvantes Farmacêuticos , Imunoglobulina G , Monofosfato de Adenosina , Anticorpos Antivirais , Glicoproteína da Espícula de Coronavírus , Imunidade Humoral
7.
Sci Rep ; 11(1): 13559, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193890

RESUMO

Prostaglandin E2 (PGE2), an active lipid compound derived from arachidonic acid, regulates different stages of the immune response of the host during several pathologies such as chronic infections or cancer. In fact, manipulation of PGE2 levels was proposed as an approach for countering the Type I IFN signature of tuberculosis (TB). However, very limited information regarding the PGE2 pathway in patients with active TB is currently available. In the present work, we demonstrated that PGE2 exerts a potent immunosuppressive action during the immune response of the human host against Mycobacterium tuberculosis (Mtb) infection. Actually, we showed that PGE2 significantly reduced the surface expression of several immunological receptors, the lymphoproliferation and the production of proinflammatory cytokines. In addition, PGE2 promoted autophagy in monocytes and neutrophils cultured with Mtb antigens. These results suggest that PGE2 might be attenuating the excessive inflammatory immune response caused by Mtb, emerging as an attractive therapeutic target. Taken together, our findings contribute to the knowledge of the role of PGE2 in the human host resistance to Mtb and highlight the potential of this lipid mediator as a tool to improve anti-TB treatment.


Assuntos
Dinoprostona/farmacologia , Imunossupressores/farmacologia , Monócitos/imunologia , Mycobacterium tuberculosis/imunologia , Neutrófilos/imunologia , Tuberculose/imunologia , Adulto , Dinoprostona/imunologia , Feminino , Humanos , Imunossupressores/imunologia , Masculino
9.
Front Immunol ; 12: 662987, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815423

RESUMO

Hijacking the autophagic machinery is a key mechanism through which invasive pathogens such as Staphylococcus aureus replicate in their host cells. We have previously demonstrated that the bacteria replicate in phagosomes labeled with the autophagic protein LC3, before escaping to the cytoplasm. Here, we show that the Ca2+-dependent PKCα binds to S. aureus-containing phagosomes and that α-hemolysin, secreted by S. aureus, promotes this recruitment of PKCα to phagosomal membranes. Interestingly, the presence of PKCα prevents the association of the autophagic protein LC3. Live cell imaging experiments using the PKC activity reporter CKAR reveal that treatment of cells with S. aureus culture supernatants containing staphylococcal secreted factors transiently activates PKC. Functional studies reveal that overexpression of PKCα causes a marked inhibition of bacterial replication. Taken together, our data identify enhancing PKCα activity as a potential approach to inhibit S. aureus replication in mammalian cells.


Assuntos
Autofagia , Interações Hospedeiro-Patógeno , Fagossomos/metabolismo , Proteína Quinase C-alfa/metabolismo , Infecções Estafilocócicas/etiologia , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/fisiologia , Animais , Autofagia/imunologia , Células CHO , Linhagem Celular , Células Cultivadas , Cricetulus , Suscetibilidade a Doenças , Imunofluorescência , Genes Reporter , Interações Hospedeiro-Patógeno/imunologia , Modelos Biológicos , Fagossomos/imunologia , Proteína Quinase C-alfa/genética
10.
Autophagy ; 17(9): 2629-2638, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32954947

RESUMO

Neutrophils infected with Mycobacterium tuberculosis (Mtb) predominate in tuberculosis patients' lungs. Neutrophils phagocytose the pathogen, but the mechanism of pathogen elimination is controversial. Macroautophagy/autophagy, a crucial mechanism for several neutrophil functions, can be modulated by immunological mediators. The costimulatory molecule SLAMF1 can act as a microbial sensor in macrophages being also able to interact with autophagy-related proteins. Here, we demonstrate for the first time that human neutrophils express SLAMF1 upon Mtb-stimulation. Furthermore, SLAMF1 was found colocalizing with LC3B+ vesicles, and activation of SLAMF1 increased neutrophil autophagy induced by Mtb. Finally, tuberculosis patients' neutrophils displayed reduced levels of SLAMF1 and lower levels of autophagy against Mtb as compared to healthy controls. Altogether, these results indicate that SLAMF1 participates in neutrophil autophagy during active tuberculosis.Abbreviations: AFB: acid-fast bacilli; BafA1: bafilomycin A1; CLL: chronic lymphocytic leukemia; DPI: diphenyleneiodonium; EVs: extracellular vesicles; FBS: fetal bovine serum; HD: healthy donors; HR: high responder (tuberculosis patient); IFNG: interferon gamma; IL1B: interleukin 1 beta; IL17A: interleukin 17A; IL8: interleukin 8; LR: low responder (tuberculosis patient); mAb: monoclonal antibody; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAPK: mitogen-activated protein kinase; MAPK1/ERK2: mitogen-activated protein kinase 1; MAPK14/p38: mitogen-activated protein kinase 14; Mtb: Mycobacterium tuberculosis; Mtb-Ag: Mycobacterium tuberculosis, Strain H37Rv, whole cell lysate; NETs: neutrophils extracellular traps; PPD: purified protein derivative; ROS: reactive oxygen species; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; SLAMF1: signaling lymphocytic activation molecule family member 1; TB: tuberculosis; TLR: toll like receptor.


Assuntos
Autofagia , Neutrófilos , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária , Tuberculose , Humanos , Macrófagos/metabolismo , Mycobacterium tuberculosis , Neutrófilos/citologia , Neutrófilos/microbiologia , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Tuberculose/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA