Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neotrop Entomol ; 53(1): 162-170, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37882954

RESUMO

We aimed to determine how the degree of urbanization in a Neotropical city influences Aedes aegypti (L.), a pantropical vector of urban yellow fever, dengue, Zika and Chikungunia, via other mosquito species, whether they are competitors or predators, native to the area or invasive. We conducted experiments twice a month during one year in the city of Kourou, French Guiana, on three sites characterized by increasing percentages of imperviousness (i.e., 0.65%, 33.80% and 86.60%). These sites were located in a ≈5 ha forest fragment, a residential area with gardens, and in the older part of the city, respectively, and correspond to slightly, moderately and highly urbanized sites. There, we monitored twice a month during one year a total of 108 mosquito communities inhabiting four types of containers (i.e., a tank bromeliad, dry stumps of bamboo, ovitraps and car tires) installed in a random block design. In the tanks of the bromeliad, likely due to the acidity of the water, the immatures of native mosquito species prevailed, particularly Wyeomyia pertinans (Williston) in the slightly urbanized site. The general pattern was very similar in the three other types of containers where Limatus durhamii Théobald dominated in the slightly urbanized site, so that the abundance of Ae. aegypti immatures was low compared to those of native species. Yet, Ae. aegypti strongly dominated in the two more urbanized sites. These findings open up perspectives for vector management, including the conservation and/or the augmentation of natural enemies through modifications to landscape features.


Assuntos
Aedes , Infecção por Zika virus , Zika virus , Animais , Urbanização , Água , Mosquitos Vetores , Cidades
2.
J Anim Ecol ; 90(9): 2015-2026, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33232512

RESUMO

While future climate scenarios predict declines in precipitations in many regions of the world, little is known of the mechanisms underlying community resilience to prolonged dry seasons, especially in 'naïve' Neotropical rainforests. Predictions of community resilience to intensifying drought are complicated by the fact that the underlying mechanisms are mediated by species' tolerance and resistance traits, as well as rescue through dispersal from source patches. We examined the contribution of in situ tolerance-resistance and immigration to community resilience, following drought events that ranged from the ambient norm to IPCC scenarios and extreme events. We used rainshelters above rainwater-filled bromeliads of French Guiana to emulate a gradient of drought intensity (from 1 to 3.6 times the current number of consecutive days without rainfall), and we analysed the post-drought dynamics of the taxonomic and functional community structure of aquatic invertebrates to these treatments when immigration is excluded (by netting bromeliads) or permitted (no nets). Drought intensity negatively affected invertebrate community resistance, but had a positive influence on community recovery during the post-drought phase. After droughts of 1 to 1.4 times the current intensities, the overall invertebrate abundance recovered within invertebrate life cycle durations (up to 2 months). Shifts in taxonomic composition were more important after longer droughts, but overall, community composition showed recovery towards baseline states. The non-random patterns of changes in functional community structure indicated that deterministic processes like environmental filtering of traits drive community re-assembly patterns after a drought event. Community resilience mostly relied on in situ tolerance-resistance traits. A rescue effect of immigration after a drought event was weak and mostly apparent under extreme droughts. Under climate change scenarios of drought intensification in Neotropical regions, community and ecosystem resilience could primarily depend on the persistence of suitable habitats and on the resistance traits of species, while metacommunity dynamics could make a minor contribution to ecosystem recovery. Climate change adaptation should thus aim at identifying and preserving local conditions that foster in situ resistance and the buffering effects of habitat features.


Assuntos
Secas , Ecossistema , Animais , Mudança Climática , Emigração e Imigração , Invertebrados
3.
C R Biol ; 341(3): 200-207, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29567468

RESUMO

In an inundated Mexican forest, 89 out of 92 myrmecophytic tank bromeliads (Aechmea bracteata) housed an associated ant colony: 13 sheltered Azteca serica, 43 Dolichoderus bispinosus, and 33 Neoponera villosa. Ant presence has a positive impact on the diversity of the aquatic macroinvertebrate communities (n=30 bromeliads studied). A Principal Component Analysis (PCA) showed that the presence and the species of ant are not correlated to bromeliad size, quantity of water, number of wells, filtered organic matter or incident radiation. The PCA and a generalized linear model showed that the presence of Azteca serica differed from the presence of the other two ant species or no ants in its effects on the aquatic invertebrate community (more predators). Therefore, both ant presence and species of ant affect the composition of the aquatic macroinvertebrate communities in the tanks of A. bracteata, likely due to ant deposition of feces and other waste in these tanks.


Assuntos
Formigas/fisiologia , Bromeliaceae/química , Animais , Florestas , Invertebrados/fisiologia , México , Água
4.
C R Biol ; 341(1): 20-27, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29198907

RESUMO

In Neotropical rainforest canopies, phytotelmata ("plant-held waters") shelter diverse aquatic macroinvertebrate communities, including vectors of animal diseases. Studying these communities is difficult because phytotelmata are widely dispersed, hard to find from the ground and often inaccessible. We propose here a method for placing in tree crowns "artificial phytotelmata" whose size and shape can be tailored to different research targets. The efficacy of this method was shown while comparing the patterns of community diversity of three forest formations. We noted a difference between a riparian forest and a rainforest, whereas trees alongside a dirt road cutting through that rainforest corresponded to a subset of the latter. Because rarefied species richness was significantly lower when the phytotelmata were left for three weeks rather than for six or nine weeks, we recommend leaving the phytotelmata for twelve weeks to permit predators and phoretic species to fully establish themselves.


Assuntos
Organismos Aquáticos , Invertebrados , Floresta Úmida , Animais , Biodiversidade , Guiana Francesa , Plantas , Árvores , Clima Tropical , Água
5.
Am Nat ; 190(5): E124-E131, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29053365

RESUMO

The Neotropical understory plant Tachia guianensis (Gentianaceae)-known to shelter the colonies of several ant species in its hollow trunks and branches-does not provide them with food rewards (e.g., extrafloral nectar). We tested whether these ants are opportunistic nesters or whether mutualistic relationships exist as for myrmecophytes or plants sheltering ant colonies in specialized hollow structures in exchange for protection from enemies and/or nutrient provisioning (myrmecotrophy). We noted 37 ant species sheltering inside T. guianensis internodes, three of them accounting for 43.5% of the cases. They protect their host plants from leaf-cutting ant defoliation and termite damage because individuals devoid of associated ants suffered significantly more attacks. Using the stable isotope 15N, we experimentally showed that the tested ant species furnish their host plants with nutrients. Therefore, a mutualism exists. However, because it is associated with numerous ant species, T. guianensis can be considered a nonspecialized myrmecophyte.


Assuntos
Formigas/fisiologia , Gentianaceae/anatomia & histologia , Gentianaceae/fisiologia , Simbiose , Animais , Guiana Francesa
6.
Insect Sci ; 22(2): 289-94, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25813245

RESUMO

Supercolonies of the red fire ant Solenopsis saevissima (Smith) develop in disturbed environments and likely alter the ant community in the native range of the species. For example, in French Guiana only 8 ant species were repeatedly noted as nesting in close vicinity to its mounds. Here, we verified if a shared set of biological, ecological, and behavioral traits might explain how these 8 species are able to nest in the presence of S. saevissima. We did not find this to be the case. We did find, however, that all of them are able to live in disturbed habitats. It is likely that over the course of evolution each of these species acquired the capacity to live syntopically with S. saevissima through its own set of traits, where colony size (4 species develop large colonies), cuticular compounds which do not trigger aggressiveness (6 species) and submissive behaviors (4 species) complement each other.


Assuntos
Formigas/fisiologia , Animais , Comportamento Animal , Dominação-Subordinação , Ecossistema , Guiana Francesa , Especificidade da Espécie , Simpatria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA