Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Intervalo de ano de publicação
3.
J Neurosci ; 41(8): 1636-1649, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33478991

RESUMO

The acquisition of neuronal polarity is a complex molecular process that depends on changes in cytoskeletal dynamics and directed membrane traffic, regulated by the Rho and Rab families of small GTPases, respectively. However, during axon specification, a molecular link that couples these protein families has yet to be identified. In this paper, we describe a new positive feedback loop between Rab8a and Cdc42, coupled by Tuba, a Cdc42-specific guanine nucleotide-exchange factor (GEF), that ensures a single axon generation in rodent hippocampal neurons from embryos of either sex. Accordingly, Rab8a or Tuba gain-of-function generates neurons with supernumerary axons whereas Rab8a or Tuba loss-of-function abrogated axon specification, phenocopying the well-established effect of Cdc42 on neuronal polarity. Although Rab8 and Tuba do not interact physically, the activity of Rab8 is essential to generate a proximal to distal axonal gradient of Tuba in cultured neurons. Tuba-associated and Rab8a-associated polarity defects are also evidenced in vivo, since dominant negative (DN) Rab8a or Tuba knock-down impairs cortical neuronal migration in mice. Our results suggest that Tuba coordinates directed vesicular traffic and cytoskeleton dynamics during neuronal polarization.SIGNIFICANCE STATEMENT The morphologic, biochemical, and functional differences observed between axon and dendrites, require dramatic structural changes. The extension of an axon that is 1 µm in diameter and grows at rates of up to 500 µm/d, demands the confluence of two cellular processes: directed membrane traffic and fine-tuned cytoskeletal dynamics. In this study, we show that both processes are integrated in a positive feedback loop, mediated by the guanine nucleotide-exchange factor (GEF) Tuba. Tuba connects the activities of the Rab GTPase Rab8a and the Rho GTPase Cdc42, ensuring the generation of a single axon in cultured hippocampal neurons and controlling the migration of cortical neurons in the developing brain. Finally, we provide compelling evidence that Tuba is the GEF that mediates Cdc42 activation during the development of neuronal polarity.


Assuntos
Polaridade Celular/fisiologia , Proteínas do Citoesqueleto/metabolismo , Neurogênese/fisiologia , Neurônios/citologia , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Células COS , Movimento Celular/fisiologia , Chlorocebus aethiops , Retroalimentação Fisiológica/fisiologia , Feminino , Hipocampo/embriologia , Masculino , Camundongos , Transporte Proteico/fisiologia , Ratos , Ratos Sprague-Dawley
4.
Front Cell Dev Biol ; 8: 550267, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33015054

RESUMO

Neural development is a complex process that involves critical events, including cytoskeleton dynamics and selective trafficking of proteins to defined cellular destinations. In this regard, Smad Anchor for Receptor Activation (SARA) is an early endosome resident protein, where perform trafficking- associated functions. In addition, SARA is also involved in cell signaling, including the TGFß-dependent pathway. Accordingly, SARA, and TGFß signaling are required for proper axonal specification and migration of cortical neurons, unveiling a critical role for neuronal development. However, the cooperative action between the TGFß pathway and SARA to this process has remained understudied. In this work, we show novel evidence suggesting a cross-talk between SARA and TGFß pathway needed for proper polarization, axonal specification, growth and cortical migration of central neurons both in vitro and in vivo. Using microscopy tools and cultured hippocampal neurons, we show a local interaction between SARA and TßRI (TGFß I receptor) at endosomes. In addition, SARA loss of function, induced by the expression of the dominant-negative SARA-F728A, over-activates the TGFß pathway, most likely by preserving phosphorylated TßRI. Consequently, SARA-mediated activation of TGFß pathway impacts on neuronal development, promoting axonal growth and cortical migration of neurons during brain development. Moreover, our data suggests that SARA basally prevents the activation of TßRI through the recruitment of the inhibitory complex PP1c/GADD34 in polarizing neurons. Together, these results propose that SARA is a negative regulator of the TGFß pathway, being critical for a proper orchestration for neuronal development.

5.
Biochim Biophys Acta Mol Cell Res ; 1867(9): 118735, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32389643

RESUMO

Emerging evidence shows that Rab11 recycling endosomes (REs Rab11) are essential for several neuronal processes, including the proper functioning of growth cones, synapse architecture regulation and neuronal migration. However, several aspects of REs Rab11 remain unclear, such as its sub-cellular distribution across neuronal development, contribution to dendritic tree organization and its consequences in memory formation. In this work we show a spatio-temporal correlation between the endogenous localization of REs Rab11 and developmental stage of neurons. Furthermore, Rab11-suppressed neurons showed an increase on dendritic branching (without altering total dendritic length) and misdistribution of dendritic proteins in cultured neurons. In addition, suppression of Rab11 in adult rat brains in vivo (by expressing shRab11 through lentiviral infection), showed a decrease on both the sensitivity to induce long-term potentiation and hippocampal-dependent memory acquisition. Taken together, our results suggest that REs Rab11 expression is required for a proper dendritic architecture and branching, controlling key aspects of synaptic plasticity and spatial memory formation.


Assuntos
Dendritos/metabolismo , Plasticidade Neuronal , Neurônios/fisiologia , Memória Espacial , Proteínas rab de Ligação ao GTP/genética , Animais , Giro Denteado/fisiologia , Fenômenos Eletrofisiológicos , Feminino , Hipocampo/fisiologia , Potenciação de Longa Duração , Masculino , Gravidez , Ratos , Proteínas rab de Ligação ao GTP/metabolismo
6.
Front Cell Dev Biol ; 8: 603794, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33425908

RESUMO

Endocytic recycling is an intracellular process that returns internalized molecules back to the plasma membrane and plays crucial roles not only in the reuse of receptor molecules but also in the remodeling of the different components of this membrane. This process is required for a diversity of cellular events, including neuronal morphology acquisition and functional regulation, among others. The recycling endosome (RE) is a key vesicular component involved in endocytic recycling. Recycling back to the cell surface may occur with the participation of several different Rab proteins, which are master regulators of membrane/protein trafficking in nerve cells. The RE consists of a network of interconnected and functionally distinct tubular subdomains that originate from sorting endosomes and transport their cargoes along microtubule tracks, by fast or slow recycling pathways. Different populations of REs, particularly those formed by Rab11, Rab35, and Arf6, are associated with a myriad of signaling proteins. In this review, we discuss the cumulative evidence suggesting the existence of heterogeneous domains of REs, controlling different aspects of neurogenesis, with a particular focus on the commonalities and singularities of these REs and their contribution to nerve development and differentiation in several animal models.

7.
PLoS One ; 10(9): e0138792, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26405814

RESUMO

SARA (Smad Anchor for Receptor Activation) plays a crucial role in Rab5-mediated endocytosis in cell lines localizing to early endosomes where it regulates morphology and function. Here, we analyzed the role of SARA during neuronal development and tested whether it functions as a regulator of endocytic trafficking of selected axonal and membrane proteins. Suppression of SARA perturbs the appearance of juxtanuclear endocytic recycling compartments and the neurons show long axons with large growth cones. Furthermore, surface distribution of the cell adhesion molecule L1 in axons and the fusion of vesicles containing transferring receptor (TfR) in dendrites were increased in neurons where SARA was silenced. Conversely, SARA overexpression generated large early endosomes and reduced neurite outgrowth. Taken together, our findings suggest a significant contribution of SARA to key aspects of neuronal development, including neurite formation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Axônios/metabolismo , Dendritos/metabolismo , Neurogênese , Animais , Células Cultivadas , Endocitose , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Ratos , Receptores da Transferrina/metabolismo
8.
Curr Biol ; 25(8): 971-82, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25802147

RESUMO

The neuronal Golgi apparatus (GA) localizes to the perinuclear region and dendrites as tubulo-vesicular structures designated Golgi outposts (GOPs). Current evidence suggests that GOPs shape dendrite morphology and serve as platforms for the local delivery of synaptic receptors. However, the mechanisms underlying GOP formation remain a mystery. Using live-cell imaging and confocal microscopy in cultured hippocampal neurons, we now show that GOPs destined to major "apical" dendrites are generated from the somatic GA by a sequence of events involving: (1) generation of a GA-derived tubule; (2) tubule elongation and deployment into the dendrite; (3) tubule fission; and (4) transport and condensation of the fissioned tubule. A RhoA-Rock signaling pathway involving LIMK1, PKD1, slingshot, cofilin, and dynamin regulates polarized GOP formation by controlling the tubule fission. Our observations identify a mechanism underlying polarized GOP biogenesis and provide new insights regarding involvement of RhoA in dendritic development and polarization.


Assuntos
Polaridade Celular/fisiologia , Dendritos/metabolismo , Complexo de Golgi/metabolismo , Hipocampo/citologia , Neurônios/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Células Cultivadas , Humanos , Microscopia Confocal , Neurônios/citologia , Transdução de Sinais/fisiologia
9.
J Neurochem ; 129(2): 240-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24517494

RESUMO

Neuronal cells are characterized by the presence of two confined domains, which are different in their cellular properties, biochemical functions and molecular identity. The generation of asymmetric domains in neurons should logically require specialized membrane trafficking to both promote neurite outgrowth and differential distribution of components. Members of the Rab family of small GTPases are key regulators of membrane trafficking involved in transport, tethering and docking of vesicles through their effectors. RabGTPases activity is coupled to the activity of guanine nucleotide exchange factors or GEFs, and GTPase-activating proteins known as GAPs. Since the overall spatiotemporal distribution of GEFs, GAPs and Rabs governs trafficking through the secretory and endocytic pathways, affecting exocytosis, endocytosis and endosome recycling, it is likely that RabGTPases could have a major role in neurite outgrowth, elongation and polarization. In this review we summarize the evidence linking the functions of several RabGTPases to axonal and dendritic development in primary neurons, as well as neurite formation in neuronal cell lines. We focused on the role of RabGTPases from the trans-Golgi network, early/late and recycling endosomes, as well as the function of some Rab effectors in neuritogenesis. Finally, we also discuss the participation of the ADP-ribosylation factor 6, a member of the ArfGTPase family, in neurite formation since it seems to have an important cross-talk with RabGTPases.


Assuntos
Neuritos/fisiologia , Proteínas rab de Ligação ao GTP/fisiologia , Fator 6 de Ribosilação do ADP , Animais , Endossomos/fisiologia , Humanos , Transdução de Sinais/fisiologia , Rede trans-Golgi/fisiologia
10.
PLoS One ; 7(6): e38948, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22701734

RESUMO

PTP1B is an endoplasmic reticulum (ER) anchored enzyme whose access to substrates is partly dependent on the ER distribution and dynamics. One of these substrates, the protein tyrosine kinase Src, has been found in the cytosol, endosomes, and plasma membrane. Here we analyzed where PTP1B and Src physically interact in intact cells, by bimolecular fluorescence complementation (BiFC) in combination with temporal and high resolution microscopy. We also determined the structural basis of this interaction. We found that BiFC signal is displayed as puncta scattered throughout the ER network, a feature that was enhanced when the substrate trapping mutant PTP1B-D181A was used. Time-lapse and co-localization analyses revealed that BiFC puncta did not correspond to vesicular carriers; instead they localized at the tip of dynamic ER tubules. BiFC puncta were retained in ventral membrane preparations after cell unroofing and were also detected within the evanescent field of total internal reflection fluorescent microscopy (TIRFM) associated to the ventral membranes of whole cells. Furthermore, BiFC puncta often colocalized with dark spots seen by surface reflection interference contrast (SRIC). Removal of Src myristoylation and polybasic motifs abolished BiFC. In addition, PTP1B active site and negative regulatory tyrosine 529 on Src were primary determinants of BiFC occurrence, although the SH3 binding motif on PTP1B also played a role. Our results suggest that ER-bound PTP1B dynamically interacts with the negative regulatory site at the C-terminus of Src at random puncta in the plasma membrane/substrate interface, likely leading to Src activation and recruitment to adhesion complexes. We postulate that this functional ER/plasma membrane crosstalk could apply to a wide array of protein partners, opening an exciting field of research.


Assuntos
Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Quinases da Família src/metabolismo , Animais , Anticorpos Monoclonais , Western Blotting , Células CHO , Adesão Celular/fisiologia , Cricetinae , Cricetulus , Imunofluorescência , Humanos , Camundongos , Microscopia de Fluorescência , Reação em Cadeia da Polimerase , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Imagem com Lapso de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA