Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Protoc ; 3(4): e726, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37074070

RESUMO

This article describes a method for quantifying various cellular features (e.g., volume, curvature, total and sub-cellular fluorescence localization) of individual cells from sets of microscope images, and for tracking them over time-course microscopy experiments. One purposely defocused transmission image (sometimes referred to as bright-field or BF) is used to segment the image and locate each cell. Fluorescence images (one for each of the color channels or z-stacks to be analyzed) may be acquired by conventional wide-field epifluorescence or confocal microscopy. This method uses a set of R packages called rcell2. Relative to the original release of Rcell (Bush et al., 2012), the updated version bundles, into a single software suite, the image-processing capabilities of Cell-ID, offers new data analysis tools for cytometry, and relies on the widely used data analysis and visualization tools of the statistical programming framework R. © 2023 Wiley Periodicals LLC. Basic Protocol: Extracting quantitative information from single cells Support Protocol 1: Obtaining and installing Cell-ID and R Support Protocol 2: Preparing cells for imaging.


Assuntos
Processamento de Imagem Assistida por Computador , Software , Microscopia Confocal/métodos , Processamento de Imagem Assistida por Computador/métodos
2.
Commun Integr Biol ; 13(1): 128-139, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-33014265

RESUMO

Chemotactic/chemotropic cells follow accurately the direction of gradients of regulatory molecules. Many G-protein-coupled receptors (GPCR) function as chemoattractant receptors to guide polarized responses. In "a" mating type yeast, the GPCR Ste2 senses the α-cell's pheromone. Previously, phosphorylation and trafficking of this receptor have been implicated in the process of gradient sensing, where cells dynamically correct growth. Correction is often necessary since yeast have intrinsic polarity sites that interfere with a correct initial gradient decoding. We have recently showed that when actively dividing (not in G1) yeast are exposed to a uniform pheromone concentration, they initiate a pheromone-induced polarization next to the mother-daughter cytokinesis site. Then, they reorient their growth to the intrinsic polarity site. Here, to study if Ste2 phosphorylation and internalization are involved in this process, we generated receptor variants combining three types of mutated signals for the first time: phosphorylation, ubiquitylation and the NPFX1,2D Sla1-binding motif. We first characterized their effect on endocytosis and found that these processes regulate internalization in a more complex manner than previously shown. Interestingly, we showed that receptor phosphorylation can drive internalization independently of ubiquitylation and the NPFX1,2D motif. When tested in our assays, cells expressing either phosphorylation or endocytosis-deficient receptors were able to switch away from the cytokinesis site to find the intrinsic polarity site as efficiently as their WT counterparts. Thus, we conclude that these processes are not necessary for the reorientation of polarization.

3.
Mol Syst Biol ; 12(12): 898, 2016 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-28034910

RESUMO

According to receptor theory, the effect of a ligand depends on the amount of agonist-receptor complex. Therefore, changes in receptor abundance should have quantitative effects. However, the response to pheromone in Saccharomyces cerevisiae is robust (unaltered) to increases or reductions in the abundance of the G-protein-coupled receptor (GPCR), Ste2, responding instead to the fraction of occupied receptor. We found experimentally that this robustness originates during G-protein activation. We developed a complete mathematical model of this step, which suggested the ability to compute fractional occupancy depends on the physical interaction between the inhibitory regulator of G-protein signaling (RGS), Sst2, and the receptor. Accordingly, replacing Sst2 by the heterologous hsRGS4, incapable of interacting with the receptor, abolished robustness. Conversely, forcing hsRGS4:Ste2 interaction restored robustness. Taken together with other results of our work, we conclude that this GPCR pathway computes fractional occupancy because ligand-bound GPCR-RGS complexes stimulate signaling while unoccupied complexes actively inhibit it. In eukaryotes, many RGSs bind to specific GPCRs, suggesting these complexes with opposing activities also detect fraction occupancy by a ratiometric measurement. Such complexes operate as push-pull devices, which we have recently described.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Receptores de Fator de Acasalamento/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Humanos , Modelos Teóricos , Ligação Proteica , Proteínas RGS/metabolismo
4.
Proc Natl Acad Sci U S A ; 106(25): 10230-5, 2009 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-19502421

RESUMO

Emerging infectious diseases of wildlife have been recognized as a major threat to global biodiversity. Endemic species on isolated oceanic islands, such as the Galápagos, are particularly at risk in the face of introduced pathogens and disease vectors. The black salt-marsh mosquito (Aedes taeniorhynchus) is the only mosquito widely distributed across the Galápagos Archipelago. Here we show that this mosquito naturally colonized the Galápagos before the arrival of man, and since then it has evolved to represent a distinct evolutionary unit and has adapted to habitats unusual for its coastal progenitor. We also present evidence that A. taeniorhynchus feeds on reptiles in Galápagos in addition to previously reported mammal and bird hosts, highlighting the important role this mosquito might play as a bridge-vector in the transmission and spread of extant and newly introduced diseases in the Galápagos Islands. These findings are particularly pertinent for West Nile virus, which can cause significant morbidity and mortality in mammals (including humans), birds, and reptiles, and which recently has spread from an introductory focus in New York to much of the North and South American mainland and could soon reach the Galápagos Islands. Unlike Hawaii, there are likely to be no highland refugia free from invading mosquito-borne diseases in Galápagos, suggesting bleak outcomes to possible future pathogen introduction events.


Assuntos
Aedes/fisiologia , Evolução Biológica , Doenças Transmissíveis/epidemiologia , Vetores de Doenças , Doenças Endêmicas , Adaptação Fisiológica , Aedes/classificação , Aedes/genética , Aedes/virologia , Animais , Sequência de Bases , Doenças Transmissíveis/transmissão , Equador , Meio Ambiente , Humanos , Masculino , Dados de Sequência Molecular , Filogenia , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/transmissão , Vírus do Nilo Ocidental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA