Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Syst Parasitol ; 101(4): 43, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805139

RESUMO

Ochoterenatrema Caballero, 1943 is a genus of lecithodendriid digeneans that prior to this study included 8 species parasitic in bats in the Western Hemisphere. Species of Ochoterenatrema possess a unique morphological feature in form of the pseudogonotyl on the sinistral side of the ventral sucker. In this study, we describe 2 new species of Ochoterenatrema from bats in Ecuador. The new species are readily differentiated from their congeners by a combination of morphological characters, including the distribution of vitelline follicles, length of oesophagus, sucker ratio and the body shape, among other features. We have generated partial nuclear 28S rDNA and mitochondrial cox1 gene DNA sequences from both new species. The newly obtained sequences were used to differentiate among species and study the phylogenetic interrelationships among Ochoterenatrema spp. The internal topology of the clade was weakly supported, although the cox1 tree was much better resolved than the 28S tree. Comparison of sequences revealed 0-1.2% interspecific divergence in 28S and 3.3-20.5% interspecific divergence in cox1 among Ochoterenatrema spp. The new findings demonstrate that bats in South America likely harbor multiple additional undescribed species of Ochoterenatrema. More extensive sampling from broader geographic and host ranges, especially in North America, should allow for a better understanding of the evolution of host associations and morphological traits of this lineage of lecithodendriid digeneans.


Assuntos
Quirópteros , Filogenia , RNA Ribossômico 28S , Especificidade da Espécie , Trematódeos , Animais , Quirópteros/parasitologia , Trematódeos/classificação , Trematódeos/genética , Trematódeos/anatomia & histologia , RNA Ribossômico 28S/genética , Equador
2.
Environ Res ; 249: 118229, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38325785

RESUMO

Per- and polyfluoroalkyl substances (PFAS) in the environment pose persistent and complex threats to human and wildlife health. Around the world, PFAS point sources such as military bases expose thousands of populations of wildlife and game species, with potentially far-reaching implications for population and ecosystem health. But few studies shed light on the extent to which PFAS permeate food webs, particularly ecologically and taxonomically diverse communities of primary and secondary consumers. Here we conducted >2000 assays to measure tissue-concentrations of 17 PFAS in 23 species of mammals and migratory birds at Holloman Air Force Base (AFB), New Mexico, USA, where wastewater catchment lakes form biodiverse oases. PFAS concentrations were among the highest reported in animal tissues, and high levels have persisted for at least three decades. Twenty of 23 species sampled at Holloman AFB were heavily contaminated, representing middle trophic levels and wetland to desert microhabitats, implicating pathways for PFAS uptake: ingestion of surface water, sediments, and soil; foraging on aquatic invertebrates and plants; and preying upon birds or mammals. The hazardous long carbon-chain form, perfluorooctanosulfonic acid (PFOS), was most abundant, with liver concentrations averaging >10,000 ng/g wet weight (ww) in birds and mammals, respectively, and reaching as high 97,000 ng/g ww in a 1994 specimen. Perfluorohexanesulfonic acid (PFHxS) averaged thousands of ng/g ww in the livers of aquatic birds and littoral-zone house mice, but one order of magnitude lower in the livers of upland desert rodent species. Piscivores and upland desert songbirds were relatively uncontaminated. At control sites, PFAS levels were strikingly lower on average and different in composition. In sum, legacy PFAS at this desert oasis have permeated local aquatic and terrestrial food webs across decades, severely contaminating populations of resident and migrant animals, and exposing people via game meat consumption and outdoor recreation.


Assuntos
Aves , Monitoramento Ambiental , Fluorocarbonos , Animais , New Mexico , Fluorocarbonos/análise , Humanos , Aves/metabolismo , Mamíferos , Poluentes Ambientais/análise , Cadeia Alimentar , Clima Desértico , Exposição Ambiental
3.
Viruses ; 15(6)2023 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-37376689

RESUMO

The Costa Rican pygmy rice rat (Oligoryzomys costaricensis) is the primary reservoir of Choclo orthohantavirus (CHOV), the causal agent of hantavirus disease, pulmonary syndrome, and fever in humans in Panama. Since the emergence of CHOV in early 2000, we have systematically sampled and archived rodents from >150 sites across Panama to establish a baseline understanding of the host and virus, producing a permanent archive of holistic specimens that we are now probing in greater detail. We summarize these collections and explore preliminary habitat/virus associations to guide future wildlife surveillance and public health efforts related to CHOV and other zoonotic pathogens. Host sequences of the mitochondrial cytochrome b gene form a single monophyletic clade in Panama, despite wide distribution across Panama. Seropositive samples were concentrated in the central region of western Panama, consistent with the ecology of this agricultural commensal and the higher incidence of CHOV in humans in that region. Hantavirus seroprevalence in the pygmy rice rat was >15% overall, with the highest prevalence in agricultural areas (21%) and the lowest prevalence in shrublands (11%). Host-pathogen distribution, transmission dynamics, genomic evolution, and habitat affinities can be derived from the preserved samples, which include frozen tissues, and now provide a foundation for expanded investigations of orthohantaviruses in Panama.


Assuntos
Infecções por Hantavirus , Orthohantavírus , Animais , Ratos , Humanos , Animais Selvagens , Estudos Soroepidemiológicos , Infecções por Hantavirus/epidemiologia , Infecções por Hantavirus/veterinária , Sigmodontinae , Roedores , Orthohantavírus/genética , Reservatórios de Doenças
4.
Viruses ; 15(6)2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37376694

RESUMO

Twenty years have passed since the emergence of hantavirus zoonosis in Panama at the beginning of this millennium. We provide an overview of epidemiological surveillance of hantavirus disease (hantavirus pulmonary syndrome and hantavirus fever) during the period 1999-2019 by including all reported and confirmed cases according to the case definition established by the health authority. Our findings reveal that hantavirus disease is a low-frequency disease, affecting primarily young people, with a relatively low case-fatality rate compared to other hantaviruses in the Americas (e.g., ANDV and SNV). It presents an annual variation with peaks every 4-5 years and an interannual variation influenced by agricultural activities. Hantavirus disease is endemic in about 27% of Panama, which corresponds to agroecological conditions that favor the population dynamics of the rodent host, Oligoryzomys costaricensis and the virus (Choclo orthohantavirus) responsible for hantavirus disease. However, this does not rule out the existence of other endemic areas to be characterized. Undoubtedly, decentralization of the laboratory test and dissemination of evidence-based surveillance guidelines and regulations have standardized and improved diagnosis, notification at the level of the primary care system, and management in intensive care units nationwide.


Assuntos
Doenças Transmissíveis , Infecções por Hantavirus , Síndrome Pulmonar por Hantavirus , Febre Hemorrágica com Síndrome Renal , Orthohantavírus , Animais , Infecções por Hantavirus/epidemiologia , Síndrome Pulmonar por Hantavirus/epidemiologia , Panamá/epidemiologia , Roedores , Sigmodontinae
6.
Ecography ; 38(8): 769-781, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26508809

RESUMO

The effects of late Quaternary climate on distributions and evolutionary dynamics of insular species are poorly understood in most tropical archipelagoes. We used ecological niche models under past and current climate to derive hypotheses regarding how stable climatic conditions shaped genetic diversity in two ecologically distinctive frogs in Puerto Rico. Whereas the Mountain Coquí, Eleutherodactylus portoricensis, is restricted to montane forest in the Cayey and Luquillo Mountains, the Red-eyed Coquí, E. antillensis, is a habitat generalist distributed across the entire Puerto Rican Bank (Puerto Rico and the Virgin Islands, excluding St. Croix). To test our hypotheses, we conducted phylogeographic and population genetic analyses based on mitochondrial and nuclear loci of each species across their range in Puerto Rico. Patterns of population differentiation in E. portoricensis, but not in E. antillensis, supported our hypotheses. For E. portoricensis, these patterns include: individuals isolated by long-term unsuitable climate in the Río Grande de Loíza Basin in eastern Puerto Rico belong to different genetic clusters; past and current climate strongly predicted genetic differentiation; and Cayey and Luquillo Mountains populations split prior to the last interglacial. For E. antillensis, these patterns include: genetic clusters did not fully correspond to predicted long-term unsuitable climate; and past and current climate weakly predicted patterns of genetic differentiation. Genetic signatures in E. antillensis are consistent with a recent range expansion into western Puerto Rico, possibly resulting from climate change and anthropogenic influences. As predicted, regions with a large area of long-term suitable climate were associated with higher genetic diversity in both species, suggesting larger and more stable populations. Finally, we discussed the implications of our findings for developing evidence-based management decisions for E. portoricensis, a taxon of special concern. Our findings illustrate the role of persistent suitable climatic conditions in promoting the persistence and diversification of tropical island organisms.

7.
PLoS One ; 9(5): e98351, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24878504

RESUMO

Roughly 40% of amphibian species are in decline with habitat loss, disease, and climate change being the most cited threats. Heterogeneity of extrinsic (e.g. climate) and intrinsic (e.g. local adaptations) factors across a species' range should influence population response to climate change and other threats. Here we examine relative detectability changes for five direct-developing leaf litter frogs between 42-year sampling periods at one Lowland Tropical Forest site (51 m.a.s.l.) and one Premontane Wet Forest site (1100 m.a.s.l.) in southwest Costa Rica. We identify individualistic changes in relative detectability among populations between sampling periods at different elevations. Both common and rare species showed site-specific declines, and no species exhibited significant declines at both sites. Detection changes are correlated with changes in temperature, dry season rainfall, and leaf litter depth since 1969. Our study species share Least Concern conservation status, life history traits, and close phylogenetic relationship, yet their populations changed individualistically both within and among species. These results counter current views of the uniformity or predictability of amphibian decline response and suggest additional complexity for conservation decisions.


Assuntos
Anuros/fisiologia , Animais , Mudança Climática , Costa Rica , Ecossistema , Filogenia , Folhas de Planta , População , Estações do Ano , Temperatura , Clima Tropical
8.
Emerg Infect Dis ; 19(12): 2012-6, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24274336

RESUMO

Powassan virus is endemic to the United States, Canada, and the Russian Far East. We report serologic evidence of circulation of this virus in Alaska, New Mexico, and Siberia. These data support further studies of viral ecology in rapidly changing Arctic environments.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos/classificação , Encefalite Transmitida por Carrapatos/epidemiologia , Alaska/epidemiologia , Animais , Vírus da Encefalite Transmitidos por Carrapatos/genética , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Geografia Médica , Especificidade de Hospedeiro , Humanos , Mamíferos , New Mexico/epidemiologia , Prevalência , Sorotipagem , Sibéria/epidemiologia
9.
Mol Ecol ; 21(24): 6033-52, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23163292

RESUMO

Quaternary climatic oscillations caused changes in sea level that altered the size, number and degree of isolation of islands, particularly in land-bridge archipelagoes. Elucidating the demographic effects of these oscillations increases our understanding of the role of climate change in shaping evolutionary processes in archipelagoes. The Puerto Rican Bank (PRB) (Puerto Rico and the Eastern Islands, which comprise Vieques, Culebra, the Virgin Islands and associated islets) in the eastern Caribbean Sea periodically coalesced during glaciations and fragmented during interglacial periods of the quaternary. To explore population-level consequences of sea level changes, we studied the phylogeography of the frog Eleutherodactylus antillensis across the archipelago. We tested hypotheses encompassing vicariance and dispersal narratives by sequencing mtDNA (c. 552 bp) of 285 individuals from 58 localities, and four nuDNA introns (totalling c. 1633 bp) from 173 of these individuals. We found low support for a hypothesis of divergence of the Eastern Islands populations prior to the start of the penultimate interglacial c. 250 kya, and higher support for a hypothesis of colonization of the Eastern Islands from sources in eastern Puerto Rico during the penultimate and last glacial period, when a land bridge united the PRB. The Río Grande de Loíza Basin in eastern Puerto Rico delineates a phylogeographic break. Haplotypes shared between the PRB and St. Croix (an island c. 105 km south-east of this archipelago) likely represent human-mediated introductions. Our findings illustrate how varying degrees of connectivity and isolation influence the evolution of tropical island organisms.


Assuntos
Anuros/genética , Genética Populacional , Modelos Genéticos , Filogenia , Animais , DNA Mitocondrial/genética , Fluxo Gênico , Variação Genética , Haplótipos , Ilhas , Dados de Sequência Molecular , Filogeografia , Porto Rico , Análise de Sequência de DNA
10.
Mol Ecol ; 20(19): 4109-22, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21880089

RESUMO

Co-divergence between host and parasites suggests that evolutionary processes act across similar spatial and temporal scales. Although there has been considerable work on the extent and correlates of co-divergence of RNA viruses and their mammalian hosts, relatively little is known about the extent to which virus evolution is determined by the phylogeographic history of host species. To test hypotheses related to co-divergence across a variety of spatial and temporal scales, we explored phylogenetic signatures in Andes virus (ANDV) sampled from Chile and its host rodent, Oligoryzomys longicaudatus. ANDV showed strong spatial subdivision, a phylogeographic pattern also recovered in the host using both spatial and genealogical approaches, and despite incomplete lineage sorting. Lineage structure in the virus seemed to be a response to current population dynamics in the host at the spatial scale of ecoregions. However, finer scale analyses revealed contrasting patterns of genetic structure across a latitudinal gradient. As predicted by their higher substitution rates, ANDV showed greater genealogical resolution than the rodent, with topological congruence influenced by the degree of lineage sorting within the host. However, despite these major differences in evolutionary dynamics, the geographic structure of host and virus converged across large spatial scales.


Assuntos
Arvicolinae/virologia , Orthohantavírus/genética , Filogenia , Animais , Arvicolinae/genética , Dinâmica Populacional , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA