Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Technol ; : 1-9, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37482803

RESUMO

Environmental release of wastewater that contains cytostatic drugs can cause genotoxic impact, since these drugs act directly on the genetic material of aquatic organisms. Thus, the aim of this study was to evaluate the removal of the cytostatic drugs cytarabine (CTR) and methotrexate (MTX) using different physico-chemical methods individually (i.e. US, O3, H2O2 and UV) and combined (i.e. O3/US, US/H2O2, O3/H2O2 and O3/US/H2O2) under different pH conditions (4, 7 and 10). In the degradation tests, the efficiency of the methods applied was found to be dependent on the pH of the solution, with the degradation of CTR being better at pH 4 and MTX at pH 7 and pH 10. The US, H2O2 and US + H2O2 methods were the least efficient in degrading CTR and MTX under the pH conditions tested. The highest MTX degradation rate after 16 min of treatment at pH 7 was achieved by the O3 + H2O2 method (97.05% - C/C0 = 0.0295). For CTR, the highest degradation rate after 16 min of treatment was achieved by the O3 process (99.70% - C/C0 = 0.0030) at pH 4. In conclusion, most of the treatment methods tested for the degradation of CTR and MTX are effective. Notably, ozonolysis is an efficient process applied alone. Also, in combination with other methods (US + O3, O3 + H2O2 and O3 + H2O2 + US) it increases the degradation performance, showing a rapid removal rate of 70-94% in less than 4 min of treatment.

2.
Environ Sci Pollut Res Int ; 28(13): 16532-16543, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33387324

RESUMO

The degradation efficiency of the Fenton reaction or ozonolysis (O3) to treat soil contaminated by crude petroleum was studied in association with the sonolysis process. To quantify oxidation efficiency, total organic carbon (TOC) and chemical oxygen demand (COD) were measured, while biochemical oxygen demand (BOD5) was measured to estimate biodegradation potential. TOC removal efficiency ranged from 9 to 52% to the Fenton reaction without sonolysis, and 18% and 78% with sonolysis for reagent concentrations of 1% H2O2-100 mM Fe2+ and 20% H2O2-1 mM Fe2+, respectively. For ozonolysis (after 10 and 60 min of treatment), the reduction in TOC ranged from 9 to 43% without sonolysis and 15 to 61% with sonolysis. The Fenton reaction without sonolysis increased the biodegradability in relation to the non-oxidized sample by 6% (1% H2O2-100 mM Fe2+) and 26% (20% H2O2-1 mM Fe2+), and with sonolysis the corresponding values were 13% and 42%, respectively. The biodegradation potential under ozonolysis without sonolysis increased from 0.18 (10 min of treatment) to 0.38 (30 min of treatment), and with sonolysis these values were 0.26 and 0.58, respectively. Optimization of the remediation processes is essential to determine sequential treatment order and efficiency.


Assuntos
Ozônio , Petróleo , Poluentes Químicos da Água , Peróxido de Hidrogênio , Ferro , Oxirredução , Solo , Poluentes Químicos da Água/análise
3.
Artigo em Inglês | MEDLINE | ID: mdl-33090067

RESUMO

The minimum set of parameters that can be used to assess the adsorption capacity of activated carbon (AC) produced from termite bio-waste was determined. Three types of AC were prepared: AC600 at 600 °C, MAC600 at the same temperature and impregnated with FeCl3, and AC800 at 800 °C. The influence of the solution pH on the adsorption, adsorption kinetics, isotherms and thermodynamic parameters was considered to characterize the amoxicillin (AMX) adsorption process. The AC materials had surface areas (m2 g-1) of approximately 248.8 for AC600, 501.6 for AC800 and 269.5 for MAC600, with point of zero charge (pHPZC) values of 8.3, 7.5 and 1.7, respectively. A time period of 30 min was chosen for the adsorption kinetics, which was best represented by the pseudo-first-order model for AC600, the intraparticle diffusion model for AC800 and the pseudo-second-order model for MAC600. Regarding the isotherms, a maximum adsorption of 23.4 mg g-1 was found for AC800. In general, the thermodynamic parameters demonstrated a non-spontaneous process. It seems that the medium conditions, the adsorbate and adsorbent characteristics, and the Gibbs free energy are the most important parameters to be considered in a preliminary assessment of the adsorption efficiency of specific adsorbent/adsorbate pairs.


Assuntos
Amoxicilina/análise , Carvão Vegetal/química , Resíduos , Poluentes Químicos da Água/análise , Adsorção , Animais , Concentração de Íons de Hidrogênio , Isópteros/química , Cinética , Temperatura , Termodinâmica
4.
Mar Pollut Bull ; 118(1-2): 206-212, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28259421

RESUMO

There is scientific evidence that beach sands are a significant contributor to the pathogen load to which visitors are exposed. To develop beach quality guidelines all beach zones must be included in microbiological evaluations, but monitoring methods for beach sand quality are relatively longstanding, expensive, laborious and require moderate laboratory infrastructure. This paper aimed to evaluate the microorganism activity in different beach zones applying and comparing a classical method of membrane filtration (MF) with two colorimetric screening methods based on fluorescein (FDA) and tetrazolium (TTC) salt biotransformation to evaluate a new rapid and low-cost method for beach sand microbiological contamination assessments. The colorimetric results can help beach managers to evaluate rapidly and at low cost the microbiological quality of different beach zones in order to decide whether remedial actions need to be adopted to prevent exposure of the public to microbes due to beach sand and/or water contamination.


Assuntos
Praias/normas , Monitoramento Ambiental/métodos , Dióxido de Silício/análise , Microbiologia da Água
5.
Environ Sci Pollut Res Int ; 24(10): 9399-9406, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28233212

RESUMO

Concerns regarding the environmental impact of diesel exhaust particulate matter (DPM) have increased in recent years. Following emission to the atmosphere, these fine materials can sorb many contaminants at their surface, which can subsequently be released, for instance, due to physicochemical environmental changes. The desorption of contaminants from particulate matter will increase the environmental pollution and can promote ecotoxicological effects. In this context, the objective of this study was to assess the aquatic ecotoxicity profile of extracts of DPM obtained at two different pH values. Thus, after collecting particulate matter from the diesel exhaust of heavy engines, extracts were obtained with pure water (at pH 2.00 and 5.00) and with a mixture of three organic solvents (dichloromethane, n-hexane, and acetone). To assess the environmental impact of DPM, the exhaust extracts were used in a battery of aquatic bioassays including key organisms of the food chain: bacteria (Aliivibrio fischeri), algae (Scenedesmus subspicatus), daphnids (Daphnia magna), and fishes (Danio rerio). The aqueous leachate at natural pH (2.0) and solvent extracts were extremely ecotoxic, while the aqueous leachate at pH = 5.0 showed the lowest ecotoxicity. The global ranking of sensitivity for the biotests tested was daphnids > algae > bacteria > fishes. Thus, the use of this bioassay battery could improve our understanding of the impact of DPM on aquatic environments, which is dependent on the pH of the leaching process.


Assuntos
Material Particulado/química , Emissões de Veículos , Aliivibrio fischeri/efeitos dos fármacos , Animais , Daphnia/efeitos dos fármacos , Hexanos
6.
Ecotoxicol Environ Saf ; 127: 199-204, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26866755

RESUMO

Diesel exhaust particulate matter (PM) can have an impact on the environment due to its chemical constitution. A large number of substances such as organic compounds, sulfates, nitrogen derivatives and metals are adsorbed to the particles and desorption of these contaminants could promote genotoxic effects. The objective of this study was to assess the in vivo genotoxicity profile of diesel exhaust PM from heavy-duty engines. Extracts were obtained through leaching with pure water and chemical extraction using three organic solvents (dichloromethane, hexane, and acetone). The in vivo Vicia faba micronucleus test (ISO 29200 protocol) was used to assess the environmental impact of the samples collected from diesel exhaust PM. The solid diesel PM (soot) dissolved in water, and the different extracts, showed positive results for micronucleus formation. After the addition of EDTA, the aqueous extracts did not show a genotoxic effect. The absence of metals in the organic solvent extract indicated that organic compounds also had a genotoxic effect, which was not observed for a similar sample cleaned in a C18 column. Thus, considering the ecological importance of higher plants in relation to ecosystems (in contrast to Salmonella spp., which are commonly used in mutagenicity studies), the Vicia micronucleus test was demonstrated to be appropriate for complementing prokaryotic or in vitro tests on diesel exhaust particulate matter included in risk assessments.


Assuntos
Poluição do Ar/efeitos adversos , Testes para Micronúcleos/métodos , Mutagênicos/toxicidade , Material Particulado/toxicidade , Emissões de Veículos/toxicidade , Vicia faba/efeitos dos fármacos , Brasil , Dano ao DNA/efeitos dos fármacos , Gasolina/toxicidade , Testes de Mutagenicidade , Compostos Orgânicos , Água/química
7.
Environ Sci Pollut Res Int ; 20(11): 7656-65, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23114837

RESUMO

The different stages involved in coal mining-related activities result in a degraded landscape and sites associated with large amounts of dumped waste material. Remediation of these contaminated soils can be carried out by application of industrial organic sludge if the concerns regarding the potential negative environmental impacts of this experimental practice are properly addressed. In this context, the objective of this study was to use ecotoxicological tests to determine the quantity of organic industrial sludge that is required as a soil amendment to restore soil production while avoiding environmental impact. Chemical analysis of the solids (industrial sludge and soil) and their leachates was carried out as well as a battery of ecotoxicity tests on enzymes (hydrolytic activity), bacteria, algae, daphnids, earthworms, and higher plants, according to standardized methodologies. Solid and leachate samples of coal-contaminated soil were more toxic than those of industrial sludge towards enzyme activity, bacteria, algae, daphnids, and earthworms. In the case of the higher plants (lettuce, corn, wild cabbage, and Surinam cherry) the industrial sludge was more toxic than the coal-contaminated soil, and a soil/sludge mixture (66:34% dry weight basis) had a stimulatory effect on the Surinam cherry biomass. The ecotoxicological assessment of the coal-contaminated soil remediation using sludge as an amendment is very important to determine application rates that could promote a stimulatory effect on agronomic species without negatively affecting the environment.


Assuntos
Minas de Carvão , Resíduos Industriais/análise , Esgotos/análise , Poluentes do Solo/análise , Animais , Ecotoxicologia , Monitoramento Ambiental , Poluição Ambiental , Medição de Risco , Solo , Poluentes do Solo/toxicidade , Testes de Toxicidade , Instalações de Eliminação de Resíduos
8.
Waste Manag ; 32(1): 153-7, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21959139

RESUMO

Civil engineering-related construction and demolition debris is an important source of waste disposed of in municipal solid waste landfills. After clay materials, gypsum waste is the second largest contributor to the residential construction waste stream. As demand for sustainable building practices grows, interest in recovering gypsum waste from construction and demolition debris is increasing, but there is a lack of standardized tests to evaluate the technical and environmental viability of this solid waste recycling process. By recycling gypsum waste, natural deposits of gypsum might be conserved and high amounts of the waste by-product could be reused in the civil construction industry. In this context, this paper investigates a physical property (i.e., resistance to axial compression), the chemical composition and the ecotoxicological potential of ceramic blocks constructed with different proportions of clay, cement and gypsum waste, and assesses the feasibility of using a minimal battery of tests to evaluate the viability of this recycling process. Consideration of the results for the resistance to axial compression tests together with production costs revealed that the best formulation was 35% of plastic clay, 35% of non-plastic clay, 10% of Portland cement and 20% of gypsum waste, which showed a mean resistance of 4.64MPa. Energy dispersive X-ray spectrometry showed calcium and sulfur to be the main elements, while quartz, gypsum, ettringite and nacrite were the main crystalline compounds found in this formulation. Ecotoxicity tests showed that leachate from this formulation is weakly toxic toward daphnids and bacteria (EC(20%)=69.0 and 75.0, respectively), while for algae and fish the leachate samples were not toxic at the EC(50%) level. Overall, these results show that the addition of 20% of gypsum waste to the ceramic blocks could provide a viable substitute for clay in the ceramics industry and the tests applied in this study proved to be a useful tool for the technical and environmental evaluation of this recycling process, bacterial and daphnid tests being more sensitive than algae and fish tests.


Assuntos
Materiais de Construção/análise , Reciclagem/métodos , Sulfato de Cálcio/análise , Sulfato de Cálcio/toxicidade , Cerâmica/análise , Cerâmica/toxicidade , Força Compressiva , Materiais de Construção/toxicidade , Resíduos Industriais/análise
9.
J Hazard Mater ; 192(3): 1108-13, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21724330

RESUMO

Nowadays, the classification of industrial solid wastes is not based on risk analysis, thus the aim of this study was to compare the toxicity classifications based on the chemical and ecotoxicological characterization of four industrial sludges submitted to a two-step stabilization/solidification (S/S) processes. To classify S/S products as hazardous or non-hazardous, values cited in Brazilian chemical waste regulations were adopted and compared to the results obtained with a battery of biotests (bacteria, alga and daphnids) which were carried out with soluble and leaching fractions. In some cases the hazardous potential of industrial sludge was underestimated, since the S/S products obtained from the metal-mechanics and automotive sludges were chemically classified as non-hazardous (but non-inert) when the ecotoxicity tests showed toxicity values for leaching and soluble fractions. In other cases, the environmental impact was overestimated, since the S/S products of the textile sludges were chemically classified as non-inert (but non-hazardous) while ecotoxicity tests did not reveal any effects on bacteria, daphnids and algae. From the results of the chemical and ecotoxicological analyses we concluded that: (i) current regulations related to solid waste classification based on leachability and solubility tests do not ensure reliable results with respect to environmental protection; (ii) the two-step process was very effective in terms of metal immobilization, even at higher metal-concentrations. Considering that S/S products will be subject to environmental conditions, it is of great interest to test the ecotoxicity potential of the contaminants release from these products with a view to avoiding environmental impact given the unreliability of ecotoxicological estimations originating from chemical analysis.


Assuntos
Monitoramento Ambiental/métodos , Esgotos , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Aliivibrio fischeri/metabolismo , Animais , Brasil , Clorófitas/metabolismo , Daphnia/metabolismo , Recuperação e Remediação Ambiental , Substâncias Perigosas , Resíduos Industriais , Metais/química , Eliminação de Resíduos/métodos , Risco , Têxteis
10.
Ecotoxicol Environ Saf ; 73(5): 939-43, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20117837

RESUMO

When ants become annoying, large quantities of formicide are applied to terrestrial ecosystems in tropical regions, but awareness of the health and environmental impacts related to the use of synthetic pesticides has been increasing. The use of green pesticides to combat target organisms could reduce these impacts. In this regard, terrestrial ecotoxicity tests with higher plants (Brassica olaracea, Lactuca sativa and Mucuna aterrima), annelids (Eisenia foetida), Collembola (Folsomia candida) and soil enzyme activity analysis (diacetate fluorescein hydrolysis) were used to evaluate short-term terrestrial ecotoxicity of a green pesticide prepared from naturally-occurring organic compounds. At the highest formicide concentration tested in these experiments (i.e., 50 g kg(-1) soil) no toxicity toward terrestrial organisms was observed. The lack of short-term terrestrial ecotoxicity suggest that this green formicide can be classed as an environmentally friendly product as compared to the ecotoxicity of the most commonly used commercialized formicides.


Assuntos
Artrópodes/efeitos dos fármacos , Cafeína/toxicidade , Ácidos Graxos/toxicidade , Inseticidas/toxicidade , Oligoquetos/efeitos dos fármacos , Plantas/efeitos dos fármacos , Animais , Brassica/efeitos dos fármacos , Relação Dose-Resposta a Droga , Química Verde , Lactuca/efeitos dos fármacos , Mucuna/efeitos dos fármacos , Poluentes do Solo/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA