Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 10(3): e0212521, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35658600

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are oxidative enzymes found in viruses, archaea, and bacteria as well as eukaryotes, such as fungi, algae and insects, actively contributing to the degradation of different polysaccharides. In Aspergillus nidulans, LPMOs from family AA9 (AnLPMO9s), along with an AA3 cellobiose dehydrogenase (AnCDH1), are cosecreted upon growth on crystalline cellulose and lignocellulosic substrates, indicating their role in the degradation of plant cell wall components. Functional analysis revealed that three target LPMO9s (AnLPMO9C, AnLPMO9F and AnLPMO9G) correspond to cellulose-active enzymes with distinct regioselectivity and activity on cellulose with different proportions of crystalline and amorphous regions. AnLPMO9s deletion and overexpression studies corroborate functional data. The abundantly secreted AnLPMO9F is a major component of the extracellular cellulolytic system, while AnLPMO9G was less abundant and constantly secreted, and acts preferentially on crystalline regions of cellulose, uniquely displaying activity on highly crystalline algae cellulose. Single or double deletion of AnLPMO9s resulted in about 25% reduction in fungal growth on sugarcane straw but not on Avicel, demonstrating the contribution of LPMO9s for the saprophytic fungal lifestyle relies on the degradation of complex lignocellulosic substrates. Although the deletion of AnCDH1 slightly reduced the cellulolytic activity, it did not affect fungal growth indicating the existence of alternative electron donors to LPMOs. Additionally, double or triple knockouts of these enzymes had no accumulative deleterious effect on the cellulolytic activity nor on fungal growth, regardless of the deleted gene. Overexpression of AnLPMO9s in a cellulose-induced secretome background confirmed the importance and applicability of AnLPMO9G to improve lignocellulose saccharification. IMPORTANCE Fungal lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that boost plant biomass degradation in combination with glycoside hydrolases. Secretion of LPMO9s arsenal by Aspergillus nidulans is influenced by the substrate and time of induction. These findings along with the biochemical characterization of novel fungal LPMO9s have implications on our understanding of their concerted action, allowing rational engineering of fungal strains for biotechnological applications such as plant biomass degradation. Additionally, the role of oxidative players in fungal growth on plant biomass was evaluated by deletion and overexpression experiments using a model fungal system.


Assuntos
Aspergillus nidulans , Oxigenases de Função Mista , Aspergillus nidulans/genética , Celulose/química , Celulose/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Lignina , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Polissacarídeos , Secretoma
2.
Braz J Microbiol ; 51(3): 1009-1020, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32410091

RESUMO

Phytic acid stores 60-90% of the inorganic phosphorus in legumes, oil seeds, and cereals, making it inaccessible for metabolic processes in living systems. In addition, given its negative charge, phytic acid complexes with divalent cations, starch, and proteins. Inorganic phosphorous can be released from phytic acid upon the action of phytases. Phytases are phosphatases produced by animals, plants, and microorganisms, notably Aspergillus niger, and are employed as animal feed additive, in chemical industry and for ethanol production. Given the industrial relevance of phytases produced by filamentous fungi, this work discusses the functional characterization of fungal phytase-coding genes/proteins, highlighting the physicochemical parameters that govern the enzymatic activity, the development of phytase super-producing strains, and key features for industrial applications.


Assuntos
6-Fitase/genética , 6-Fitase/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , 6-Fitase/química , Ração Animal , Animais , Aspergillus niger/enzimologia , Aspergillus niger/genética , Proteínas Fúngicas/química , Fungos/classificação , Fungos/enzimologia , Fungos/genética , Indústrias , Filogenia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura
3.
BMC Genomics ; 19(1): 58, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29343217

RESUMO

BACKGROUND: The Ceratocystis genus harbors a large number of phytopathogenic fungi that cause xylem parenchyma degradation and vascular destruction on a broad range of economically important plants. Ceratocystis cacaofunesta is a necrotrophic fungus responsible for lethal wilt disease in cacao. The aim of this work is to analyze the genome of C. cacaofunesta through a comparative approach with genomes of other Sordariomycetes in order to better understand the molecular basis of pathogenicity in the Ceratocystis genus. RESULTS: We present an analysis of the C. cacaofunesta genome focusing on secreted proteins that might constitute pathogenicity factors. Comparative genome analyses among five Ceratocystidaceae species and 23 other Sordariomycetes fungi showed a strong reduction in gene content of the Ceratocystis genus. However, some gene families displayed a remarkable expansion, in particular, the Phosphatidylinositol specific phospholipases-C (PI-PLC) family. Also, evolutionary rate calculations suggest that the evolution process of this family was guided by positive selection. Interestingly, among the 82 PI-PLCs genes identified in the C. cacaofunesta genome, 70 genes encoding extracellular PI-PLCs are grouped in eight small scaffolds surrounded by transposon fragments and scars that could be involved in the rapid evolution of the PI-PLC family. Experimental secretome using LC-MS/MS validated 24% (86 proteins) of the total predicted secretome (342 proteins), including four PI-PLCs and other important pathogenicity factors. CONCLUSION: Analysis of the Ceratocystis cacaofunesta genome provides evidence that PI-PLCs may play a role in pathogenicity. Subsequent functional studies will be aimed at evaluating this hypothesis. The observed genetic arsenals, together with the analysis of the PI-PLC family shown in this work, reveal significant differences in the Ceratocystis genome compared to the classical vascular fungi, Verticillium and Fusarium. Altogether, our analyses provide new insights into the evolution and the molecular basis of plant pathogenicity.


Assuntos
Ascomicetos/genética , Cacau/microbiologia , Proteínas Fúngicas/genética , Regulação da Expressão Gênica de Plantas , Genoma Fúngico , Genômica/métodos , Fosfoinositídeo Fosfolipase C/genética , Ascomicetos/metabolismo , Evolução Molecular , Proteínas Fúngicas/metabolismo , Fosfatidilinositóis/química , Fosfatidilinositóis/metabolismo , Fosfoinositídeo Fosfolipase C/química , Fosfoinositídeo Fosfolipase C/metabolismo , Filogenia , Conformação Proteica
4.
BMC Biotechnol ; 17(1): 71, 2017 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-28888227

RESUMO

BACKGROUND: Second-generation ethanol production is a clean bioenergy source with potential to mitigate fossil fuel emissions. The engineering of Saccharomyces cerevisiae for xylose utilization is an essential step towards the production of this biofuel. Though xylose isomerase (XI) is the key enzyme for xylose conversion, almost half of the XI genes are not functional when expressed in S. cerevisiae. To date, protein misfolding is the most plausible hypothesis to explain this phenomenon. RESULTS: This study demonstrated that XI from the bacterium Propionibacterium acidipropionici becomes functional in S. cerevisiae when co-expressed with GroEL-GroES chaperonin complex from Escherichia coli. The developed strain BTY34, harboring the chaperonin complex, is able to efficiently convert xylose to ethanol with a yield of 0.44 g ethanol/g xylose. Furthermore, the BTY34 strain presents a xylose consumption rate similar to those observed for strains carrying the widely used XI from the fungus Orpinomyces sp. In addition, the tetrameric XI structure from P. acidipropionici showed an elevated number of hydrophobic amino acid residues on the surface of protein when compared to XI commonly expressed in S. cerevisiae. CONCLUSIONS: Based on our results, we elaborate an extensive discussion concerning the uncertainties that surround heterologous expression of xylose isomerases in S. cerevisiae. Probably, a correct folding promoted by GroEL-GroES could solve some issues regarding a limited or absent XI activity in S. cerevisiae. The strains developed in this work have promising industrial characteristics, and the designed strategy could be an interesting approach to overcome the non-functionality of bacterial protein expression in yeasts.


Assuntos
Aldose-Cetose Isomerases/metabolismo , Chaperonina 60/genética , Proteínas de Escherichia coli/genética , Proteínas de Choque Térmico/genética , Engenharia de Proteínas/métodos , Saccharomyces cerevisiae/genética , Aldose-Cetose Isomerases/química , Aldose-Cetose Isomerases/genética , Chaperonina 60/metabolismo , Proteínas de Escherichia coli/metabolismo , Etanol/metabolismo , Proteínas de Choque Térmico/metabolismo , Modelos Moleculares , Propionibacterium/enzimologia , Conformação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Xilose/metabolismo
5.
Sci Rep ; 6: 38676, 2016 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-28000736

RESUMO

The development of biocatalysts capable of fermenting xylose, a five-carbon sugar abundant in lignocellulosic biomass, is a key step to achieve a viable production of second-generation ethanol. In this work, a robust industrial strain of Saccharomyces cerevisiae was modified by the addition of essential genes for pentose metabolism. Subsequently, taken through cycles of adaptive evolution with selection for optimal xylose utilization, strains could efficiently convert xylose to ethanol with a yield of about 0.46 g ethanol/g xylose. Though evolved independently, two strains carried shared mutations: amplification of the xylose isomerase gene and inactivation of ISU1, a gene encoding a scaffold protein involved in the assembly of iron-sulfur clusters. In addition, one of evolved strains carried a mutation in SSK2, a member of MAPKKK signaling pathway. In validation experiments, mutating ISU1 or SSK2 improved the ability to metabolize xylose of yeast cells without adaptive evolution, suggesting that these genes are key players in a regulatory network for xylose fermentation. Furthermore, addition of iron ion to the growth media improved xylose fermentation even by non-evolved cells. Our results provide promising new targets for metabolic engineering of C5-yeasts and point to iron as a potential new additive for improvement of second-generation ethanol production.


Assuntos
Engenharia Genética/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Xilose/metabolismo , Sequência de Bases , Diploide , Evolução Molecular , Fermentação/efeitos dos fármacos , Genoma Fúngico , Heterozigoto , Homozigoto , Ferro/farmacologia , Cariótipo , Engenharia Metabólica , Nucleotídeos/genética , Mutação Puntual/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transformação Genética
6.
J Basic Microbiol ; 54(2): 133-41, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23553535

RESUMO

A number of parameters, including culture medium pH, affect growth and enzyme production by microorganisms. In the present study, the production and secretion of pectin lyase (PL) and polygalacturonase (PG) by recombinant strains of Penicillium griseoroseum cultured in mineral-buffered media (MBM; initial pH 6.8) and mineral-unbuffered medium (MUM; initial pH 6.3) were evaluated. Under these culture conditions, no change in the transcriptional levels of plg1 and pgg2 was observed. However, the levels of secreted total protein ranged from 7.80 ± 1.1 to 3.25 ± 1.50 µg ml(-1) in MBM and MUM, respectively, and were evaluated by SDS-PAGE. PL and PG enzymatic activities decreased 6.4 and 3.6 times, respectively, when P. griseoroseum was cultivated under acidic pH conditions (MUM). Furthermore, differences were observed in the hypha and mycelium morphology. These findings suggest that acidic growing conditions affect PL and PG secretion, even though the transcription and translation processes are successful. The data obtained in this study will help to establish optimal culture conditions that increase production and secretion of recombinant proteins by filamentous fungi.


Assuntos
Proteínas Fúngicas/metabolismo , Penicillium/metabolismo , Poligalacturonase/metabolismo , Proteínas Fúngicas/biossíntese , Concentração de Íons de Hidrogênio , Organismos Geneticamente Modificados , Penicillium/citologia , Penicillium/genética , Poligalacturonase/biossíntese , Polissacarídeo-Liases/biossíntese , Prostaglandinas G/genética , Prostaglandinas G/metabolismo
7.
Braz J Microbiol ; 39(1): 102-7, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24031188

RESUMO

α-Amylase production by thermophilic Bacillus sp strain SMIA-2 cultivated in liquid cultures containing soluble starch as a carbon source and supplemented with 0.05% whey protein and 0.2% peptone reached a maximum activity at 32 h, with levels of 37 U/mL. Studies on the amylase characterization revealed that the optimum temperature of this enzyme was 90°C. The enzyme was stable for 1 h at temperatures ranging from 40-50°C while at 90°C, 66% of its maximum activity was lost. However, in the presence of 5 mM CaCl2, the enzyme was stable at 90°C for 30 min and retained about 58% residual activity after 1 h. The optimum pH of the enzyme was found to be 8.5. After incubation of enzyme for 2 h at pH 9.5 and 11.0 was observed a decrease of about 6.3% and 16.5% of its original activity. At pH 6.0 the enzyme lost about 36% of its original activity. The enzyme was strongly inhibited by Co(2+), Cu(2+) and Ba(2+), but less affected by Mg(2+), Na(+) and K(+). In the presence of 2.0 M NaCl, 63% of amylase activity was retained after 2 h incubation at 45°C. The amylase exhibited more than 70% activity when incubated for 1 h at 50°C with sodium dodecyl sulphate. However, very little residual activity was obtained with sodium hypochlorite and with hydrogen peroxide the enzyme was completely inhibited. The compatibility of Bacillus sp SMIA-2 amylase with certain commercial detergents was shown to be good as the enzyme retained 86%, 85% and 75% of its activity after 20 min incubation at 50°C in the presence of the detergent brands Omo(®), Campeiro(®) and Tide(®), respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA