Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
J Comput Chem ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39082832

RESUMO

Recently tetraspanin CD151 has been identified as an important biological target involved in metastatic processes which include cell adhesion, tumor progression processes, and so forth in different types of cancers, such as breast cancer and glioblastoma. This in Silico study considered 1603 compounds from the Food and Drug Administration database, after performing an ADMET analysis; we selected 853 ligands, which were used for docking analysis. The most promising ligands were selected from docking studies, based on two criteria: (a) showed lowest affinity to the CD151 protein and (b) they interact with the QRD motif, located in the second extracellular loop. Furthermore, we investigate the stability of the protein-ligand complexes through MD simulations as well as free energy MM-PBSA calculations. From these results, loperamide and glipizide were identified as the best evaluated drugs. We suggest an in vitro analysis is needed to confirm our in silico prediction studies.

2.
Expert Rev Anticancer Ther ; 24(8): 665-677, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38913911

RESUMO

INTRODUCTION: The pharmacological treatment of cancer has evolved from cytotoxic to molecular targeted therapy. The median survival gains of 124 drugs approved by the FDA from 2003 to 2021 is 2.8 months. Targeted therapy is based on the somatic mutation theory, which has some paradoxes and limitations. While efforts of targeted therapy must continue, we must study newer approaches that could advance therapy and affordability for patients. AREAS COVERED: This work briefly overviews how cancer therapy has evolved from cytotoxic chemotherapy to current molecular-targeted therapy. The limitations of the one-target, one-drug approach considering cancer as a robust system and the basis for multitargeting approach with polypharmacotherapy using repurposing drugs. EXPERT OPINION: Multitargeted polypharmacotherapy for cancer with repurposed drugs should be systematically investigated in preclinical and clinical studies. Remarkably, most of these proposed drugs already have a long history in the clinical setting, and their safety is known. In principle, the risk of their simultaneous administration should not be greater than that of a first-in-human phase I study as long as the protocol is developed with strict vigilance to detect early possible side effects from their potential interactions. Research on cancer therapy should go beyond the prevailing paradigm targeted therapy.


Assuntos
Antineoplásicos , Reposicionamento de Medicamentos , Terapia de Alvo Molecular , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Animais , Taxa de Sobrevida , Polifarmacologia , Desenvolvimento de Medicamentos
3.
Pharmaceuticals (Basel) ; 17(5)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38794217

RESUMO

BACKGROUND: The inflammasome is a cytosolic multiprotein complex associated with multiple autoimmune diseases. Phytochemical compounds in soy (Glycine max) foods, such as isoflavones, have been reported for their anti-inflammatory properties. AIM: the anti-inflammatory activity of DZ (daidzein) and EQ (equol) were investigated in an ex vivo model of LPS-stimulated murine peritoneal macrophages and by molecular docking correlation. METHODS: Cells were pre-treated with DZ (25, 50, and 100 µM) or EQ (5, 10, and 25 µM), followed by LPS stimulation. The levels of PGE2, NO, TNF-α, IL-6, and IL-1ß were analyzed by ELISA, whereas the expressions of COX-2, iNOS, NLRP3, ASC, caspase 1, and IL-18 were measured by Western blotting. Also, the potential for transcriptional modulation by targeting NF-κB, COX-2, iNOS, NLRP3, ASC, and caspase 1 was investigated by molecular docking. RESULTS: The anti-inflammatory responses observed may be due to the modulation of NF-κB due to the binding of DZ or EQ, which is translated into decreased TNF-α, COX-2, iNOS, NLRP3, and ASC levels. CONCLUSION: This study establishes that DZ and EQ inhibit LPS-induced inflammatory responses in peritoneal murine macrophages via down-regulation of NO and PGE2 generation, as well as the inhibition of the canonical inflammasome pathway, regulating NLRP3, and consequently decreasing IL-1ß and IL-18 activation.

4.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612615

RESUMO

The post-COVID condition (PCC) is a pathology stemming from COVID-19, and studying its pathophysiology, diagnosis, and treatment is crucial. Neuroinflammation causes the most common manifestations of this disease including headaches, fatigue, insomnia, depression, anxiety, among others. Currently, there are no specific management proposals; however, given that the inflammatory component involves cytokines and free radicals, these conditions must be treated to reduce the current symptoms and provide neuroprotection to reduce the risk of a long-term neurodegenerative disease. It has been shown that cannabis has compounds with immunomodulatory and antioxidant functions in other pathologies. Therefore, exploring this approach could provide a viable therapeutic option for PCC, which is the purpose of this review. This review involved an exhaustive search in specialized databases including PubMed, PubChem, ProQuest, EBSCO, Scopus, Science Direct, Web of Science, and Clinical Trials. Phytocannabinoids, including cannabidiol (CBD), cannabigerol (CBG), and Delta-9-tetrahydrocannabinol (THC), exhibit significant antioxidative and anti-inflammatory properties and have been shown to be an effective treatment for neuroinflammatory conditions. These compounds could be promising adjuvants for PCC alone or in combination with other antioxidants or therapies. PCC presents significant challenges to neurological health, and neuroinflammation and oxidative stress play central roles in its pathogenesis. Antioxidant therapy and cannabinoid-based approaches represent promising areas of research and treatment for mitigating adverse effects, but further studies are needed.


Assuntos
COVID-19 , Cannabis , Alucinógenos , Doenças Neurodegenerativas , Humanos , Síndrome de COVID-19 Pós-Aguda , Antioxidantes/uso terapêutico , Doenças Neuroinflamatórias , COVID-19/complicações , Agonistas de Receptores de Canabinoides
5.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38399473

RESUMO

For this study, procyanidins generated through the autoxidation of (-)-epicatechin (Flavan-3-ol) under mildly acidic conditions (pH = 6.0) were characterized with ultra high-performance liquid chromatography (UHPLC) coupled with tandem mass spectrometry (MS/MS). Two procyanidins (types A and B) and a mix of oligomers were generated through the autoxidation of (-)-epicatechin. The antiproliferative activity of this mixture of procyanidins on MDA-MB-231, MDA-MB-436, and MCF-7 breast cancer cells was evaluated. The results indicate that the procyanidin mixture inhibited the proliferation of breast cancer cells, where the activity of the procyanidin mixture was stronger than that of (-)-epicatechin. Moreover, the mechanism underlying the antiproliferative activity of procyanidins was investigated. The resulting data demonstrate that the procyanidins induced apoptotic cell death in a manner selective to cancerous cells. In particular, they caused the activation of intrinsic and extrinsic apoptotic pathways in the breast cancer cells. The findings obtained in this study demonstrate that the generation of procyanidins in vitro by the autoxidation of (-)-epicatechin has potential for the development of anti-breast cancer agents.

6.
Int J Mol Sci ; 24(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38003581

RESUMO

The spike (S) protein of SARS-CoV-2 is a molecular target of great interest for developing drug therapies against COVID-19 because S is responsible for the interaction of the virus with the host cell receptor. Currently, there is no outpatient safety treatment for COVID-19 disease. Furthermore, we consider it of worthy importance to evaluate experimentally the possible interaction of drugs (approved by the Food and Drug Administration) and the S, considering some previously in silico and clinical use. Then, the objective of this study was to demonstrate the in vitro interaction of ivermectin with S. The equilibrium dialysis technique with UV-Vis was performed to obtain the affinity and dissociation constants. In addition, the Drug Affinity Responsive Target Stability (DARTS) technique was used to demonstrate the in vitro interaction of S with ivermectin. The results indicate the interaction between ivermectin and the S with an association and dissociation constant of Ka = 1.22 µM-1 and Kd = 0.81 µM, respectively. The interaction was demonstrated in ratios of 1:50 pmol and 1:100 pmol (S: ivermectin) by the DARTS technique. The results obtained with these two different techniques demonstrate an interaction between S and ivermectin previously explored in silico, suggesting its clinical uses to stop the viral spread among susceptible human hosts.


Assuntos
COVID-19 , Estados Unidos , Humanos , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Ivermectina/farmacologia , Ivermectina/uso terapêutico
7.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37833990

RESUMO

Breast cancer (BC) is one of the biggest health problems worldwide, characterized by intricate metabolic and biochemical complexities stemming from pronounced variations across dysregulated molecular pathways. If BC is not diagnosed early, complications may lead to death. Thus, the pursuit of novel therapeutic avenues persists, notably focusing on epigenetic pathways such as histone deacetylases (HDACs). The compound N-(2-hydroxyphenyl)-2-propylpentanamide (HO-AAVPA), a derivative of valproic acid (VPA), has emerged as a promising candidate warranting pre-clinical investigation. HO-AAVPA is an HDAC inhibitor with antiproliferative effects on BC, but its molecular mechanism has yet to be deciphered. Furthermore, in the present study, we determined the metabolomic effects of HO-AAVPA and VPA on cells of luminal breast cancer (MCF-7) and triple-negative breast cancer (MDA-MB-231) subtypes. The LC-MS untargeted metabolomic study allowed for the simultaneous measurement of multiple metabolites and pathways, identifying that both compounds affect glycerophospholipid and sphingolipid metabolism in the MCF-7 and MDA-MB-231 cell lines, suggesting that other biological targets were different from HDACs. In addition, there are different dysregulate metabolites, possibly due to the physicochemical differences between HO-AAVPA and VPA.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Ácido Valproico/farmacologia , Células MCF-7 , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Neoplasias de Mama Triplo Negativas/metabolismo , Metabolômica , Linhagem Celular Tumoral , Proliferação de Células
8.
Life Sci Alliance ; 6(12)2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37813486

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) has the worst prognosis among all human cancers as it is highly resistant to chemotherapy. K-Ras mutations usually trigger the development and progression of PDAC. We hypothesized that compounds stabilizing the KRas4B/PDE6δ complex could serve as PDAC treatments. Using in silico approaches, we identified the small molecules C14 and P8 that reduced K-Ras activation in primary PDAC cells. Importantly, C14 and P8 significantly prevented tumor growth in patient-derived xenotransplants. Combined treatment with C14 and P8 strongly increased cytotoxicity in PDAC cell lines and primary cultures and showed strong synergistic antineoplastic effects in preclinical murine PDAC models that were superior to conventional therapeutics without causing side effects. Mechanistically, C14 and P8 reduced tumor growth by inhibiting AKT and ERK signaling downstream of K-RAS leading to apoptosis, specifically in PDAC cells. Thus, combined treatment with C14 and P8 may be a superior pharmaceutical strategy to improve the outcome of PDAC.


Assuntos
Antineoplásicos , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Linhagem Celular Tumoral , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Antineoplásicos/farmacologia , Neoplasias Pancreáticas
9.
Molecules ; 28(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37687111

RESUMO

Valproic acid (VPA) is a drug that has various therapeutic applications; however, it has been associated with liver damage. Furthermore, it is interesting to propose new compounds derived from VPA as N-(2-hydroxyphenyl)-2-propylpentanamide (HO-AAVPA). The HO-AAVPA has better antiproliferative activity than the VPA in different cancer cell lines. The purpose of this study was to evaluate the liver injury of HO-AAVPA by acute treatment (once administration) and repeated doses for 7 days under intraperitoneal administration. The median lethal dose value (LD50) was determined in rats and mice (females and males) using OECD Guideline 425. In the study, male rats were randomly divided into 4 groups (n = 7), G1: control (without treatment), G2: vehicle, G3: VPA (500 mg/kg), and G4: HO-AAVPA (708 mg/kg, in equimolar ratio to VPA). Some biomarkers related to hepatotoxicity were evaluated. In addition, macroscopic and histological studies were performed. The LD50 value of HO-AAVPA was greater than 2000 mg/kg. Regarding macroscopy and biochemistry, the HO-AAVPA does not induce liver injury according to the measures of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, glutathione peroxidase, glutathione reductase, and catalase activities. Comparing the treatment with HO-AAVPA and VPA did not show a significant difference with the control group, while malondialdehyde and glutathione-reduced levels in the group treated with HO-AAVPA were close to those of the control (p ≤ 0.05). The histological study shows that liver lesions caused by HO-AAVPA were less severe compared with VPA. Therefore, it is suggested that HO-AAVPA does not induce hepatotoxicity at therapeutic doses, considering that in the future it could be proposed as an antineoplastic drug.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Neoplasias , Masculino , Feminino , Animais , Camundongos , Ratos , Ácido Valproico/efeitos adversos , Glutationa , Doença Hepática Induzida por Substâncias e Drogas/etiologia
10.
Anal Methods ; 15(24): 2979-2988, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37309667

RESUMO

Bioactive peptides are biomolecules involved in very diverse mechanisms in vivo. It has been reported that bioactive peptides play a very important role in the regulation of physiological functions such as oxidative stress, hypertension, cancer and inflammation. It's been reported that the milk derived peptide (VPP) prevents the progress of hypertension in different animal models and human beings with mild hypertension. It has also been shown that oral administration of VPP produces an anti-inflammatory effect in adipose tissue of mouse models. Currently there are no reports on the possible interaction of VPP with the enzymes superoxide dismutase (SOD) and catalase (CAT), the main regulators of oxidative stress. This study analyzes the interaction between VPP and specific domains in the minimal promoter region of the genes SOD and CAT in blood samples of obese children using a QCM-D type piezoelectric biosensor. We also used molecular modeling (docking) to determine the interaction between the peptide VPP and the minimal promoter region of both genes. With QCM-D, we detected the interaction of VPP with the nitrogenous base sequences that comprise the minimal promoter regions of both genes CAT and SOD. These experimental interactions were explained at the atomic level by molecular docking simulations showing how the peptides are capable of reaching the DNA structures by means of hydrogen bonds with favored free energy values. It is possible to conclude that the combined use of docking and QCM-D allows for the determination of the interaction of small peptides (VPP) with specific sequences of genes.


Assuntos
Hipertensão , Obesidade Infantil , Criança , Camundongos , Animais , Humanos , Catalase/genética , Simulação de Acoplamento Molecular , Peptídeos/genética , Superóxido Dismutase/genética , Regiões Promotoras Genéticas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA