Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
BMC Infect Dis ; 23(1): 499, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507666

RESUMO

BACKGROUND: Chikungunya is associated with high morbidity and the natural history of symptomatic infection has been divided into three phases (acute, post-acute, and chronic) according to the duration of musculoskeletal symptoms. Although this classification has been designed to help guide therapeutic decisions, it does not encompass the complexity of the clinical expression of the disease and does not assist in the evaluation of the prognosis of severity nor chronic disease. Thus, the current challenge is to identify and diagnose musculoskeletal disorders and to provide the optimal treatment in order to prevent perpetuation or progression to a potentially destructive disease course. METHODS: The study is the first product of the Clinical and Applied Research Network in Chikungunya (REPLICK). This is a prospective, outpatient department-based, multicenter cohort study in Brazil. Four work packages were defined: i. Clinical research; ii) Translational Science - comprising immunology and virology streams; iii) Epidemiology and Economics; iv) Therapeutic Response and clinical trials design. Scheduled appointments on days 21 (D21) ± 7 after enrollment, D90 ± 15, D120 ± 30, D180 ± 30; D360 ± 30; D720 ± 60, and D1080 ± 60 days. On these visits a panel of blood tests are collected in addition to the clinical report forms to obtain data on socio-demographic, medical history, physical examination and questionnaires devoted to the evaluation of musculoskeletal manifestations and overall health are performed. Participants are asked to consent for their specimens to be maintained in a biobank. Aliquots of blood, serum, saliva, PAXgene, and when clinically indicated to be examined, synovial fluid, are stored at -80° C. The study protocol was submitted and approved to the National IRB and local IRB at each study site. DISCUSSION: Standardized and harmonized patient cohorts are needed to provide better estimates of chronic arthralgia development, the clinical spectra of acute and chronic disease and investigation of associated risk factors. This study is the largest evaluation of the long-term sequelae of individuals infected with CHIKV in the Brazilian population focusing on musculoskeletal manifestations, mental health, quality of life, and chronic pain. This information will both define disease burden and costs associated with CHIKV infection, and better inform therapeutic guidelines.


Assuntos
Febre de Chikungunya , Humanos , Febre de Chikungunya/diagnóstico , Febre de Chikungunya/epidemiologia , Febre de Chikungunya/terapia , Estudos de Coortes , Estudos Prospectivos , Qualidade de Vida , Doença Crônica , Estudos Multicêntricos como Assunto
2.
Front Physiol ; 14: 1113968, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36895630

RESUMO

Endothelial barrier (EB) disruption contributes to acute lung injury in COVID-19, and levels of both VEGF-A and Ang-2, which are mediators of EB integrity, have been associated with COVID-19 severity. Here we explored the participation of additional mediators of barrier integrity in this process, as well as the potential of serum from COVID-19 patients to induce EB disruption in cell monolayers. In a cohort from a clinical trial consisting of thirty patients with COVID-19 that required hospital admission due to hypoxia we demonstrate that i) levels of soluble Tie2 were increase, and of soluble VE-cadherin were decreased when compared to healthy individuals; ii) sera from these patients induce barrier disruption in monolayers of endothelial cells; and iii) that the magnitude of this effect is proportional to disease severity and to circulating levels of VEGF-A and Ang-2. Our study confirms and extends previous findings on the pathogenesis of acute lung injury in COVID-19, reinforcing the concept that EB is a relevant component of this disease. Our results pave the way for future studies that can refine our understanding of the pathogenesis of acute lung injury in viral respiratory disorders, and contribute to the identification of new biomarkers and therapeutic targets for these conditions.

4.
Comput Struct Biotechnol J ; 20: 3708-3717, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35891792

RESUMO

Malaria is a tropical disease caused by Plasmodium spp. and transmitted by the bite of infected Anopheles mosquitoes. Protein kinases (PKs) play key roles in the life cycle of the etiological agent of malaria, turning these proteins attractive targets for antimalarial drug discovery campaigns. As part of an effort to understand parasite signaling functions, we report the results of a bioinformatics pipeline analysis of PKs of eight Plasmodium species. To date, no P. malariae and P. ovale kinome assemble has been conducted. We classified, curated and annotated predicted kinases to update P. falciparum, P. vivax, P. yoelii, P. berghei, P. chabaudi, and P. knowlesi kinomes published to date, as well as report for the first time the kinomes of P. malariae and P. ovale. Overall, from 76 to 97 PKs were identified among all Plasmodium spp. kinomes. Most of the kinases were assigned to seven of nine major kinase groups: AGC, CAMK, CMGC, CK1, STE, TKL, OTHER; and the Plasmodium-specific group FIKK. About 30% of kinases have been deeply classified into group, family and subfamily levels and only about 10% remained unclassified. Furthermore, updating and comparing the kinomes of P. vivax and P. falciparum allowed for the prioritization and selection of kinases as potential drug targets that could be explored for discovering new drugs against malaria. This integrated approach resulted in the selection of 37 protein kinases as potential targets and the identification of investigational compounds with moderate in vitro activity against asexual P. falciparum (3D7 and Dd2 strains) stages that could serve as starting points for the search of potent antimalarial leads in the future.

5.
Front Med (Lausanne) ; 8: 758405, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34917633

RESUMO

Background: The use of corticosteroids may help control the cytokine storm occurring in acute respiratory failure due to the severe form of COVID-19. We evaluated the postacute effect of corticosteroids used during the acute phase, such as impairment in pulmonary function parameters, on day 120 (D120)-follow-up, in participants who survived over 28 days. Methods: This is a parallel, double-blind, randomized, placebo-controlled phase IIb clinical trial carried out between April 18 and October 9, 2020, conducted in hospitalized patients with clinical-radiological suspicion of COVID-19, aged 18 years or older, with SpO2 ≤ 94% on room air or requiring supplementary oxygen, or under invasive mechanical ventilation (IMV) in a referral center in Manaus, Western Brazilian Amazon. Intravenous methylprednisolone (MP) (0.5 mg/kg) was given two times daily for 5 days to these patients. The primary outcome used for this study was pulmonary function testing at day 120 follow-up visit. Results: Out of the total of surviving patients at day 28 (n = 246) from the Metcovid study, a total of 118 underwent satisfactory pulmonary function testing (62 in the placebo arm and 56 in the MP arm). The supportive treatment was similar between the placebo and MP groups (seven [11%] vs. four [7%]; P = 0.45). At hospital admission, IL-6 levels were higher in the MP group (P < 0.01). Also, the need for ICU (P = 0.06), need for IMV (P = 0.07), and creatine kinase (P = 0.05) on admission also tended to be higher in this group. In the univariate analysis, forced expiratory volume on 1st second of exhalation (FEV1) and forced vital capacity (FVC) at D120 follow-up were significantly higher in patients in the MP arm, being this last parameter also significantly higher in the multivariate analysis independently of IMV and IL-6 levels on admission. Conclusion: The use of steroids for at least 5 days in severe COVID-19 was associated with a higher FVC, which suggests that hospitalized COVID-19 patients might benefit from the use of MP in its use in the long-term, with less pulmonary restrictive functions, attributed to fibrosis. Trial Registration: ClinicalTrials.gov, Identifier: NCT04343729.

6.
J Chem Inf Model ; 61(9): 4224-4235, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34387990

RESUMO

With the rapidly evolving SARS-CoV-2 variants of concern, there is an urgent need for the discovery of further treatments for the coronavirus disease (COVID-19). Drug repurposing is one of the most rapid strategies for addressing this need, and numerous compounds have already been selected for in vitro testing by several groups. These have led to a growing database of molecules with in vitro activity against the virus. Machine learning models can assist drug discovery through prediction of the best compounds based on previously published data. Herein, we have implemented several machine learning methods to develop predictive models from recent SARS-CoV-2 in vitro inhibition data and used them to prioritize additional FDA-approved compounds for in vitro testing selected from our in-house compound library. From the compounds predicted with a Bayesian machine learning model, lumefantrine, an antimalarial was selected for testing and showed limited antiviral activity in cell-based assays while demonstrating binding (Kd 259 nM) to the spike protein using microscale thermophoresis. Several other compounds which we prioritized have since been tested by others and were also found to be active in vitro. This combined machine learning and in vitro testing approach can be expanded to virtually screen available molecules with predicted activity against SARS-CoV-2 reference WIV04 strain and circulating variants of concern. In the process of this work, we have created multiple iterations of machine learning models that can be used as a prioritization tool for SARS-CoV-2 antiviral drug discovery programs. The very latest model for SARS-CoV-2 with over 500 compounds is now freely available at www.assaycentral.org.


Assuntos
COVID-19 , SARS-CoV-2 , Teorema de Bayes , Humanos , Aprendizado de Máquina , Simulação de Acoplamento Molecular
7.
Front Cell Infect Microbiol ; 11: 614985, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249772

RESUMO

In a Plasmodium vivax infection, it was shown a proportionally increased on gametocyte distribution within the bone marrow aspirant, suggesting a role of this organ as a reservoir for this parasite stage. Here, we evaluated the ex vivo cytoadhesive capacity of P. vivax gametocytes to bone marrow endothelial cells (HBMEC) and investigated the involvement of some receptors in the cytoadhesion process by using transfected CHO cells (CHO-ICAM1, CHO-CD36 and CHO-VCAM), wild type (CHO-K1) or deficient in heparan and chondroitin sulfate (CHO-745). Ex-vivo cytoadhesion assays were performed using a total of 44 P. vivax isolates enriched in gametocyte stages by Percoll gradient in the different cell lines. The majority of isolates (88.9%) were able to adhere to HBMEC monolayer. ICAM1 seemed to be the sole receptor significantly involved. CD-36 was the receptor with higher adhesion rate, despite no significance was noticed when compared to CHO-745. We demonstrated that gametocyte P. vivax adheres ex vivo to bone marrow endothelial cells. Moreover, P. vivax gametocytes display the ability to adhere to all CHO cells investigated, especially to CHO-ICAM1. These findings bring insights to the comprehension of the role of the bone marrow as a P. vivax reservoir and the potential impact on parasite transmission to the vector.


Assuntos
Plasmodium falciparum , Plasmodium vivax , Animais , Medula Óssea , Cricetinae , Cricetulus , Células Endoteliais , Plasmodium vivax/genética
8.
Biomolecules ; 11(3)2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808643

RESUMO

With about 400,000 annual deaths worldwide, malaria remains a public health burden in tropical and subtropical areas, especially in low-income countries. Selection of drug-resistant Plasmodium strains has driven the need to explore novel antimalarial compounds with diverse modes of action. In this context, biodiversity has been widely exploited as a resourceful channel of biologically active compounds, as exemplified by antimalarial drugs such as quinine and artemisinin, derived from natural products. Thus, combining a natural product library and quantitative structure-activity relationship (QSAR)-based virtual screening, we have prioritized genuine and derivative natural compounds with potential antimalarial activity prior to in vitro testing. Experimental validation against cultured chloroquine-sensitive and multi-drug-resistant P. falciparum strains confirmed the potent and selective activity of two sesquiterpene lactones (LDT-597 and LDT-598) identified in silico. Quantitative structure-property relationship (QSPR) models predicted absorption, distribution, metabolism, and excretion (ADME) and physiologically based pharmacokinetic (PBPK) parameters for the most promising compound, showing that it presents good physiologically based pharmacokinetic properties both in rats and humans. Altogether, the in vitro parasite growth inhibition results obtained from in silico screened compounds encourage the use of virtual screening campaigns for identification of promising natural compound-based antimalarial molecules.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Artemisininas/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Relação Quantitativa Estrutura-Atividade , Quinina/farmacologia
9.
Sci Rep ; 11(1): 2730, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33526848

RESUMO

Numerous mechanisms have been proposed to explain why patients with malaria are more susceptible to bloodstream invasions by Salmonella spp., however there are still several unknown critical factors regarding the pathogenesis of coinfection. From a coinfection model, in which an S. enterica serovar Typhi (S_Typhi) was chosen to challenge mice that had been infected 24 h earlier with Plasmodium berghei ANKA (P.b_ANKA), we evaluated the influence of malaria on cytokine levels, the functional activity of femoral bone marrow-derived macrophages and neutrophils, and intestinal permeability. The cytokine profile over eight days of coinfection showed exacerbation in the cytokines MCP-1, IFNγ and TNFα in relation to the increase seen in animals with malaria. The cytokine profile was associated with a considerably reduced neutrophil and macrophage count and a prominent dysfunction, especially in ex vivo neutrophils in coinfected mice, though without bacterial modulation that could influence the invasion capacity of ex vivo S_Typhi obtained from liver macerate in non-phagocyte cells. Finally, irregularities in the integrity of intestinal tissue evidenced ruptures in the enterocyte layer, a presence of mononuclear leukocytes in the enterocyte layer, an increase of goblet cells in the enterocyte layer and a high volume of leukocyte infiltrate in the sub-mucosa were greatly increased in coinfected animals. Increases of mononuclear leukocytes in the enterocyte layer and volume of leukocyte infiltrate in the sub-mucosa were also seen in monoinfected animals with P. berghei ANKA. Our findings suggest malaria causes a disarrangement of intestinal homeostasis, exacerbation of proinflammatory cytokines and dysfunction in neutrophils that render the host susceptible to bacteremia by Salmonella spp.


Assuntos
Fígado/patologia , Malária/patologia , Febre Tifoide/patologia , Animais , Coinfecção/patologia , Modelos Animais de Doenças , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Neutrófilos/patologia , Plasmodium berghei , Salmonella typhi
10.
Adv Protein Chem Struct Biol ; 124: 187-223, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33632465

RESUMO

Neglected tropical diseases (NTDs) are a group of twenty-one diseases classified by the World Health Organization that prevail in regions with tropical and subtropical climate and affect more than one billion people. There is an urgent need to develop new and safer drugs for these diseases. Protein kinases are a potential class of targets for developing new drugs against NTDs, since they play crucial role in many biological processes, such as signaling pathways, regulating cellular communication, division, metabolism and death. Bioinformatics is a field that aims to organize large amounts of biological data as well as develop and use tools for understanding and analyze them in order to produce meaningful information in a biological manner. In combination with chemogenomics, which analyzes chemical-biological interactions to screen ligands against selected targets families, these approaches can be used to stablish a rational strategy for prioritizing new drug targets for NTDs. Here, we describe how bioinformatics and chemogenomics tools can help to identify protein kinases and their potential inhibitors for the development of new drugs for NTDs. We present a review of bioinformatics tools and techniques that can be used to define an organisms kinome for drug prioritization, drug and target repurposing, multi-quinase inhibition approachs and selectivity profiling. We also present some successful examples of the application of such approaches in recent case studies.


Assuntos
Biologia Computacional , Genômica , Doenças Negligenciadas , Inibidores de Proteínas Quinases , Proteínas Quinases , Medicina Tropical , Humanos , Doenças Negligenciadas/tratamento farmacológico , Doenças Negligenciadas/enzimologia , Doenças Negligenciadas/genética , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Quinases/química , Proteínas Quinases/genética , Proteínas Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA