Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Infect Dis Model ; 9(4): 1027-1044, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38974900

RESUMO

In this paper we examine several definitions of vaccine efficacy (VE) that we found in the literature, for diseases that express themselves in outbreaks, that is, when the force of infection grows in time, reaches a maximum and then vanishes. The fact that the disease occurs in outbreaks results in several problems that we analyse. We propose a mathematical model that allows the calculation of VE for several scenarios. Vaccine trials usually needs a large number of volunteers that must be enrolled. Ideally, all volunteers should be enrolled in approximately the same time, but this is generally impossible for logistic reasons and they are enrolled in a fashion that can be replaced by a continuous density function (for example, a Gaussian function). The outbreak can also be replaced by a continuous density function, and the use of these density functions simplifies the calculations. Assuming, for example Gaussian functions, one of the problems one can immediately notice is that the peak of the two curves do not occur at the same time. The model allows us to conclude: First, the calculated vaccine efficacy decreases when the force of infection increases; Second, the calculated vaccine efficacy decreases when the gap between the peak in the force of infection and the peak in the enrollment rate increases; Third, different trial protocols can be simulated with this model; different vaccine efficacy definitions can be calculated and in our simulations, all result are approximately the same. The final, and perhaps most important conclusion of our model, is that vaccine efficacy calculated during outbreaks must be carefully examined and the best way we can suggest to overcome this problem is to stratify the enrolled volunteer's in a cohort-by-cohort basis and do the survival analysis for each cohort, or apply the Cox proportional hazards model for each cohort.

2.
Infect Dis Model, v. 9, n. 4 1027-1044, mai. 2024
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5408

RESUMO

In this paper we examine several definitions of vaccine efficacy (VE) that we found in the literature, for diseases that express themselves in outbreaks, that is, when the force of infection grows in time, reaches a maximum and then vanishes. The fact that the disease occurs in outbreaks results in several problems that we analyse. We propose a mathematical model that allows the calculation of VE for several scenarios. Vaccine trials usually needs a large number of volunteers that must be enrolled. Ideally, all volunteers should be enrolled in approximately the same time, but this is generally impossible for logistic reasons and they are enrolled in a fashion that can be replaced by a continuous density function (for example, a Gaussian function). The outbreak can also be replaced by a continuous density function, and the use of these density functions simplifies the calculations. Assuming, for example Gaussian functions, one of the problems one can immediately notice is that the peak of the two curves do not occur at the same time. The model allows us to conclude: First, the calculated vaccine efficacy decreases when the force of infection increases; Second, the calculated vaccine efficacy decreases when the gap between the peak in the force of infection and the peak in the enrollment rate increases; Third, different trial protocols can be simulated with this model; different vaccine efficacy definitions can be calculated and in our simulations, all result are approximately the same. The final, and perhaps most important conclusion of our model, is that vaccine efficacy calculated during outbreaks must be carefully examined and the best way we can suggest to overcome this problem is to stratify the enrolled volunteer's in a cohort-by-cohort basis and do the survival analysis for each cohort, or apply the Cox proportional hazards model for each cohort

4.
PLoS One ; 18(5): e0285466, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37167285

RESUMO

In this paper we calculate the variation of the estimated vaccine efficacy (VE) due to the time-dependent force of infection resulting from the difference between the moment the Clinical Trial (CT) begins and the peak in the outbreak intensity. Using a simple mathematical model we tested the hypothesis that the time difference between the moment the CT begins and the peak in the outbreak intensity determines substantially different values for VE. We exemplify the method with the case of the VE efficacy estimation for one of the vaccines against the new coronavirus SARS-CoV-2.


Assuntos
COVID-19 , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Eficácia de Vacinas , Surtos de Doenças
5.
PloS One, v. 18, n. 5, e0285466, maio. 2023
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4985

RESUMO

In this paper we calculate the variation of the estimated vaccine efficacy (VE) due to the time-dependent force of infection resulting from the difference between the moment the Clinical Trial (CT) begins and the peak in the outbreak intensity. Using a simple mathematical model we tested the hypothesis that the time difference between the moment the CT begins and the peak in the outbreak intensity determines substantially different values for VE. We exemplify the method with the case of the VE efficacy estimation for one of the vaccines against the new coronavirus SARS-CoV-2.

6.
PloS One, v. 18, n. 5, e0285466, mai. 2023
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4905

RESUMO

In this paper we calculate the variation of the estimated vaccine efficacy (VE) due to the time-dependent force of infection resulting from the difference between the moment the Clinical Trial (CT) begins and the peak in the outbreak intensity. Using a simple mathematical model we tested the hypothesis that the time difference between the moment the CT begins and the peak in the outbreak intensity determines substantially different values for VE. We exemplify the method with the case of the VE efficacy estimation for one of the vaccines against the new coronavirus SARS-CoV-2.

7.
Theor Biol Med Model ; 18(1): 14, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34325717

RESUMO

BACKGROUND: At the moment we have more than 177 million cases and 3.8 million deaths (as of June 2021) around the world and vaccination represents the only hope to control the pandemic. Imperfections in planning vaccine acquisition and difficulties in implementing distribution among the population, however, have hampered the control of the virus so far. METHODS: We propose a new mathematical model to estimate the impact of vaccination delay against the 2019 coronavirus disease (COVID-19) on the number of cases and deaths due to the disease in Brazil. We apply the model to Brazil as a whole and to the State of Sao Paulo, the most affected by COVID-19 in Brazil. We simulated the model for the populations of the State of Sao Paulo and Brazil as a whole, varying the scenarios related to vaccine efficacy and compliance from the populations. RESULTS: The model projects that, in the absence of vaccination, almost 170 thousand deaths and more than 350 thousand deaths will occur by the end of 2021 for Sao Paulo and Brazil, respectively. If in contrast, Sao Paulo and Brazil had enough vaccine supply and so started a vaccination campaign in January with the maximum vaccination rate, compliance and efficacy, they could have averted more than 112 thousand deaths and 127 thousand deaths, respectively. In addition, for each month of delay the number of deaths increases monotonically in a logarithmic fashion, for both the State of Sao Paulo and Brazil as a whole. CONCLUSIONS: Our model shows that the current delay in the vaccination schedules that is observed in many countries has serious consequences in terms of mortality by the disease and should serve as an alert to health authorities to speed the process up such that the highest number of people to be immunized is reached in the shortest period of time.


Assuntos
COVID-19 , Vacinas , Brasil , Vacinas contra COVID-19 , Humanos , SARS-CoV-2 , Vacinação
8.
Epidemiol Infect ; 149: e86, 2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33814022

RESUMO

In this paper, we present a method to estimate the risk of reopening of schools illustrated with the case of the State of São Paulo, Brazil. The model showed that, although no death of children would result from the reopening of the schools in the three cities analysed, the risk of asymptomatic and symptomatic cases and secondary cases among teachers, school staff and relatives of the children is not negligible. Although the epidemic hit different regions with different intensities, our model shows that, for regions where the incidence profile is similar to the cities analysed, the risk of reopening of schools is still too high. This in spite of the fact that incidences in these cities were declining in the period of the time considered. Therefore, although we cannot extend the result to the entire country, the overall conclusion is valid for regions with a declining incidence and it is even more valid for regions where incidence is increasing. We assumed a very conservative level of infection transmissibility of children of just 10% as that of adults. In spite of the very low level of transmissibility is assumed, the number of secondary cases caused by infected children among teachers, school staff and relatives varied from 2 to 85. It is, therefore, too soon to have any degree of confidence that reopening of schools before the advent of a vaccine is the right decision to take. The purpose of our model and simulations is to provide a method to estimate the risk of school reopening, although we are sure it could be applied as a guide to public health strategies.


Assuntos
COVID-19/epidemiologia , COVID-19/transmissão , Instituições Acadêmicas , Estudantes/estatística & dados numéricos , Adulto , Infecções Assintomáticas/epidemiologia , Brasil/epidemiologia , COVID-19/prevenção & controle , Criança , Pré-Escolar , Surtos de Doenças/prevenção & controle , Família , Humanos , Incidência , Lactente , Modelos Teóricos , SARS-CoV-2 , Professores Escolares , População Urbana
9.
Clinics (Sao Paulo) ; 76: e2639, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33787657

RESUMO

OBJECTIVES: With the declining numbers of coronavirus disease 2019 (COVID-19) cases in the state of São Paulo, Brazil, social distancing measures have gradually been lifted. However, the risk of a surge in the number of cases cannot be overlooked. Even with the adoption of nonpharmaceutical interventions, such as restrictions on mass gatherings, wearing of masks, and complete or partial closure of schools, other public health measures may help control the epidemic. We aimed to evaluate the impact of the contact tracing of symptomatic individuals on the COVID-19 epidemic regardless of the use of diagnostic testing. METHODS: We developed a mathematical model that includes isolation of symptomatic individuals and tracing of contacts to assess the effects of the contact tracing of symptomatic individuals on the COVID-19 epidemic in the state of São Paulo. RESULTS: For a selection efficacy (proportion of isolated contacts who are infected) of 80%, cases and deaths may be reduced by 80% after 60 days when 5000 symptomatic individuals are isolated per day, each of them together with 10 contacts. On the other hand, for a selection efficacy of 20%, the number of cases and deaths may be reduced by approximately 40% and 50%, respectively, compared with the scenario in which no contact-tracing strategy is implemented. CONCLUSION: Contact tracing of symptomatic individuals may potentially be an alternative strategy when the number of diagnostic tests available is not sufficient for massive testing.


Assuntos
COVID-19 , Epidemias , Brasil/epidemiologia , Busca de Comunicante , Humanos , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA