Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Ethnopharmacol ; 281: 114512, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34384848

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cancer is an inflammatory disease because carcinogenesis and tumor progression depend on intrinsic and extrinsic inflammatory pathways. Although species of the genus Aspidosperma are widely used to treat tumors, and there is ethnopharmacological evidence for traditional use of the species A. subincanum as an anti-inflammatory agent, its antineoplastic potential is unknown. AIM OF THE STUDY: To evaluate toxic effects of the indole alkaloid-rich fraction (IAF) of A. subincanum on the MCF7 cell line and identify some of the anti-inflammatory mechanisms involved. MATERIALS AND METHODS: Chromatographic analyses were performed by ultra-high-performance liquid chromatography with electrospray ionization mass spectrometry, and cytotoxic and antiproliferative effects of IAF were verified by MTT and clonogenic assays. Cell cycle alterations were analyzed by measuring DNA content, while propidium iodide and acridine orange staining was performed to determine the type of induced cell death. The expression of apoptosis markers and proteins involved in cell proliferation and survival pathways was analyzed by immunoblotting, RT-qPCR, and ELISAs. Interference with redox status was investigated using a DCFH-DA probe and by measuring catalase activity. RESULTS: Chromatographic analyses showed that IAF is a complex mixture containing indole alkaloids. IAF selectively exerted toxic and antiproliferative effects, elevating the Bax/Bcl-xL ratio and inducing apoptosis in MCF7 cells. IAF decreased intracellular reactive oxygen species levels and increased catalase activity, while reducing the IL-8 level and suppressing COX-2 expression. CONCLUSIONS: IAF induces apoptosis in MCF7 cells by suppressing COX-2 expression while reducing IL-8 levels and intracellular content of reactive oxygen species.


Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Aspidosperma , Alcaloides Indólicos/farmacologia , Extratos Vegetais/farmacologia , Linhagem Celular Tumoral , Fenômenos Fisiológicos Celulares/efeitos dos fármacos , Ciclo-Oxigenase 2/genética , Humanos , Interleucina-8/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
3.
Microbiome ; 9(1): 134, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112246

RESUMO

The phenotypes of allergic airway diseases are influenced by the interplay between host genetics and the gut microbiota, which may be modulated by probiotics. We investigated the probiotic effects on allergic inflammation in A/J and C57BL/6 mice. C57BL/6 mice had increased gut microbiota diversity compared to A/J mice at baseline. Acetate producer probiotics differentially modulated and altered the genus abundance of specific bacteria, such as Akkermansia and Allistipes, in mouse strains. We induced airway inflammation followed by probiotic treatment and found that only A/J mice exhibited decreased inflammation, and the beneficial effects of probiotics in A/J mice were partially due to acetate production. To understand the relevance of microbial composition colonization in the development of allergic diseases, we implanted female C57BL/6 mice with A/J embryos to naturally modulate the microbial composition of A/J mice, which increased gut microbiota diversity and reduced eosinophilic inflammation in A/J. These data demonstrate the central importance of microbiota to allergic phenotype severity. Video Abstract.


Assuntos
Microbioma Gastrointestinal , Probióticos , Animais , Feminino , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Sistema Respiratório
4.
Clin Sci (Lond) ; 133(22): 2345-2360, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31722009

RESUMO

There is no consensus on the effects of omega-3 (ω-3) fatty acids (FA) on cutaneous repair. To solve this problem, we used 2 different approaches: (1) FAT-1 transgenic mice, capable of producing endogenous ω-3 FA; (2) wild-type (WT) mice orally supplemented with DHA-enriched fish oil. FAT-1 mice had higher systemic (serum) and local (skin tissue) ω-3 FA levels, mainly docosahexaenoic acid (DHA), in comparison with WT mice. FAT-1 mice had increased myeloperoxidase (MPO) activity and content of CXCL-1 and CXCL-2, and reduced IL-10 in the skin wound tissue three days after the wound induction. Inflammation was maintained by an elevated TNF-α concentration and presence of inflammatory cells and edema. Neutrophils and macrophages, isolated from FAT-1 mice, also produced increased TNF-α and reduced IL-10 levels. In these mice, the wound closure was delayed, with a wound area 6-fold bigger in relation with WT group, on the last day of analysis (14 days post-wounding). This was associated with poor orientation of collagen fibers and structural aspects in repaired tissue. Similarly, DHA group had a delay during late inflammatory phase. This group had increased TNF-α content and CD45+F4/80+ cells at the third day after skin wounding and increased concentrations of important metabolites derived from ω-3, like 18-HEPE, and reduced concentrations of those from ω-6 FA. In conclusion, elevated DHA content, achieved in both FAT-1 and DHA groups, slowed inflammation resolution and impaired the quality of healed skin tissue.


Assuntos
Ácidos Docosa-Hexaenoicos/fisiologia , Cicatrização , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Suplementos Nutricionais , Ácidos Graxos Dessaturases/genética , Inflamação , Macrófagos/fisiologia , Masculino , Camundongos Transgênicos , Neutrófilos/fisiologia , Pele/metabolismo
5.
Lipids Health Dis ; 17(1): 55, 2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-29554895

RESUMO

BACKGROUND: We have recently demonstrated that palmitoleic acid (16:1n7) increases lipolysis, glucose uptake and glucose utilization for energy production in white adipose cells. In the present study, we tested the hypothesis that palmitoleic acid modulates bioenergetic activity in white adipocytes. METHODS: For this, 3 T3-L1 pre-adipocytes were differentiated into mature adipocytes in the presence (or absence) of palmitic (16:0) or palmitoleic (16:1n7) acid at 100 or 200 µM. The following parameters were evaluated: lipolysis, lipogenesis, fatty acid (FA) oxidation, ATP content, oxygen consumption, mitochondrial mass, citrate synthase activity and protein content of mitochondrial oxidative phosphorylation (OXPHOS) complexes. RESULTS: Treatment with 16:1n7 during 9 days raised basal and isoproterenol-stimulated lipolysis, FA incorporation into triacylglycerol (TAG), FA oxidation, oxygen consumption, protein expression of subunits representing OXPHOS complex II, III, and V and intracellular ATP content. These effects were not observed in adipocytes treated with 16:0. CONCLUSIONS: Palmitoleic acid, by concerted action on lipolysis, FA esterification, mitochondrial FA oxidation, oxygen consumption and ATP content, does enhance white adipocyte energy expenditure and may act as local hormone.


Assuntos
Trifosfato de Adenosina/metabolismo , Adipócitos Brancos/efeitos dos fármacos , Adipócitos Brancos/metabolismo , Ácidos Graxos Monoinsaturados/farmacologia , Ácidos Graxos/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipogênese/efeitos dos fármacos , Lipólise/efeitos dos fármacos , Camundongos , Oxirredução/efeitos dos fármacos , Triglicerídeos/metabolismo
6.
J Nutr Biochem ; 55: 76-88, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29413492

RESUMO

Omega-3 polyunsaturated fatty acids (n-3 PUFAs) have been reported to improve insulin sensitivity and glucose homeostasis in animal models of insulin resistance, but the involved mechanisms still remain unresolved. In this study, we evaluated the effects of fish oil (FO), a source of n-3 PUFAs, on obesity, insulin resistance and muscle mitochondrial function in mice fed a high-fat diet (HFD). C57Bl/6 male mice, 8 weeks old, were divided into four groups: control diet (C), high-fat diet (H), C+FO (CFO) and H+FO (HFO). FO was administered by oral gavage (2 g/kg b.w.), three times a week, starting 4 weeks before diet administration until the end of the experimental protocol. HFD-induced obesity and insulin resistance associated with impaired skeletal muscle mitochondrial function, as indicated by decreased oxygen consumption, tricarboxylic acid cycle intermediate (TCAi) contents (citrate, α-ketoglutarate, malate and oxaloacetate), oxidative phosphorylation protein content and mitochondrial biogenesis. These effects were associated with elevated reactive oxygen species production, decreased PGC1-a transcription and reduced Akt phosphorylation. The changes induced by the HFD were partially attenuated by FO, which decreased obesity and insulin resistance and increased mitochondrial function. In the H group, FO supplementation also improved oxygen consumption; increased TCAi content, and Akt and AMPK phosphorylation; and up-regulated mRNA expression of Gpat1, Pepck, catalase and mitochondrial proteins (Pgc1α, Pparα, Cpt1 and Ucp3). These results suggest that dietary FO attenuates the deleterious effects of the HFD (obesity and insulin resistance) by improving skeletal muscle mitochondrial function.


Assuntos
Óleos de Peixe/farmacologia , Resistência à Insulina , Mitocôndrias Musculares/fisiologia , Obesidade/dietoterapia , Adiposidade/efeitos dos fármacos , Animais , Fármacos Antiobesidade/farmacologia , Catalase/metabolismo , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Peróxido de Hidrogênio/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias Musculares/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Obesidade/etiologia , Proteínas/genética , Proteínas/metabolismo
7.
Front Microbiol ; 8: 1732, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28959241

RESUMO

Asthma is a chronic inflammatory disease that affects more females than males after puberty, and its symptoms and severity in women change during menstruation and menopause. Recently, evidence has demonstrated that interactions among the microbiota, female sex hormones, and immunity are associated with the development of autoimmune diseases. However, no studies have investigated if therapeutic gut microbiota modulation strategies could affect asthma exacerbation during menstruation and menopause. Here we aimed to examine the preventive effects of a probiotic, Bifidobacterium longum 51A, on airway inflammation exacerbation in allergic ovariectomized mice. We first evaluated the gut microbiota composition and diversity in mice 10 days after ovariectomy. Next, we examined whether re-exposure of ovariectomized allergic mice to antigen (ovalbumin) would lead to exacerbation of lung inflammation. Finally, we evaluated the preventive and treatment effect of B. longum 51A on lung inflammation and airway hyperresponsiveness. Our results showed that whereas ovariectomy caused no alterations in the gut microbiota composition and diversity in this animal model, 10 days after ovariectomy, preventive use administration of B. longum 51A, rather than its use after surgery was capable of attenuate the exacerbated lung inflammation and hyperresponsiveness in ovariectomized allergic mice. This prophylactic effect of B. longum 51A involves acetate production, which led to increased fecal acetate levels and, consequently, increased Treg cells in ovariectomized allergic mice.

8.
Rev. bras. farmacogn ; 27(2): 206-213, Mar.-Apr. 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-843800

RESUMO

ABSTRACT Euphorbia umbellata (Pax) Bruyns, Euphorbiaceae, is commonly used in folk medicine of southern Brazil to treat several kinds of cancer. The latex (part of the plant used for this purpose) is mixed with water and taken as treatment; but this matrix contains toxic potential related to the presence of some phorbol type diterpenes. So the aim of this study was to evaluate the cytotoxicity of the crude extract of the bark of E. umbellata and its fractions (Hex, CHCl3, EtOAc and MeOH) using in vitro assay (applying Jurkat cells line). A preliminary cytotoxic study (MTT reduction, trypan blue exclusion and DNA quantification assays) was executed to identify the most active material. The CHCl3 fraction displayed the highest activity and was selected for further investigation of any cytotoxic mechanism and evaluation of chemical composition; flow cytometry, Acridine orange and Hoechst 33342 staining experiments and Gas chromatography–mass spectrometry analysis were applied to achieve these results. This fraction demonstrated the best cytotoxic results against Jurkat cells line with IC50 of 29.00 ± 1.49, 10.06 ± 1.48 and 4.83 ± 2.25 µg/ml for 24, 48 and 72 h of experiment, respectively (trypan blue exclusion). The mechanism responsible for this action can be associated with the promotion of cell cycle arrest and apoptosis. The two main classes of compounds present in the CHCl3 fraction are steroids and triterpenes. Further, phytochemical studies with this fraction need to be evaluated, to try isolating these substances and establishing a more detailed cytotoxic study against Jurkat cells.

9.
J Physiol ; 594(21): 6301-6317, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27558442

RESUMO

KEY POINTS: Fish oil (FO), rich in omega-3 polyunsaturated fatty acids, has beneficial effects on changes induced by obesity and partially prevents associated comorbidities. The effects of FO on adipocytes from different adipose tissue depots in high-fat (HF) diet induced obese mice have not been uninvestigated. This is the first study to examine the effects of FO on changes in metabolism and adipokine production in adipocytes from s.c. (inguinal; ING) or visceral (retroperitoneal; RP) white adipose depots in a HF diet-induced obese mice. Unlike most studies performed previously, FO supplementation was initiated 4 weeks before the induction of obesity. HF diet caused marked changes in ING (glucose uptake and secretion of adiponectin, tumour necrosis factor-α and interleukin-6 in ING) and RP (lipolysis, de novo lipogenesis and secretion of pro-inflammatory cytokines) adipose depots. Previous and concomitant FO administration prevented the changes in ING and RP adipocytes induced by the HF diet. ABSTRACT: In the present study, we investigated the effect of fish oil (FO) on metabolism and adipokine production by adipocytes from s.c. (inguinal; ING) and visceral (retroperitoneal; RP) white adipose depots in high-fat (HF) diet-induced obese mice. Mice were divided into CO (control diet), CO+FO, HF and HF+FO groups. The HF group presented higher body weight, glucose intolerance, insulin resistance, higher plasma total and low-density lipoprotein cholesterol levels, and greater weights of ING and RP adipose depots accompanied by hypertrophy of the adipocytes. FO exerted anti-obesogenic effects associated with beneficial effects on dyslipidaemia and insulin resistance in mice fed a HF diet (HF+FO group). HF raised RP adipocyte lipolysis and the production of pro-inflammatory cytokines and reduced de novo synthesis of fatty acids, whereas, in ING adipocytes, it decreased glucose uptake and adiponectin secretion but did not change lipolysis. Therefore, the adipose depots play different roles in HF diet-induced insulin resistance according to their location in the body. Concerning cytokine secretion, adipocytes per se in addition to white adopise tissue infiltrated leukocytes have to be considered in the aetiology of the comorbidities associated with obesity. Evidence is presented showing that previous and concomitant administration of FO can prevent changes in metabolism and the secretion of hormones and cytokines in ING and RP adipocytes induced by HF.


Assuntos
Adipócitos/efeitos dos fármacos , Adipocinas/metabolismo , Óleos de Peixe/farmacologia , Gordura Intra-Abdominal/metabolismo , Obesidade/metabolismo , Gordura Subcutânea/metabolismo , Adipócitos/metabolismo , Animais , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Óleos de Peixe/uso terapêutico , Interleucina-6/metabolismo , Gordura Intra-Abdominal/citologia , Gordura Intra-Abdominal/efeitos dos fármacos , Lipólise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico , Obesidade/etiologia , Gordura Subcutânea/citologia , Gordura Subcutânea/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
10.
Mediators Inflamm ; 2014: 870634, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25332517

RESUMO

Excess of saturated fatty acids in the diet has been associated with obesity, leading to systemic disruption of insulin signaling, glucose intolerance, and inflammation. Macadamia oil administration has been shown to improve lipid profile in humans. We evaluated the effect of macadamia oil supplementation on insulin sensitivity, inflammation, lipid profile, and adipocyte size in high-fat diet (HF) induced obesity in mice. C57BL/6 male mice (8 weeks) were divided into four groups: (a) control diet (CD), (b) HF, (c) CD supplemented with macadamia oil by gavage at 2 g/Kg of body weight, three times per week, for 12 weeks (CD + MO), and (d) HF diet supplemented with macadamia oil (HF + MO). CD and HF mice were supplemented with water. HF mice showed hypercholesterolemia and decreased insulin sensitivity as also previously shown. HF induced inflammation in adipose tissue and peritoneal macrophages, as well as adipocyte hypertrophy. Macadamia oil supplementation attenuated hypertrophy of adipocytes and inflammation in the adipose tissue and macrophages.


Assuntos
Inflamação/dietoterapia , Macadamia , Obesidade/dietoterapia , Óleos de Plantas/administração & dosagem , Adipócitos/patologia , Animais , Crescimento Celular , Colesterol/sangue , Citocinas/biossíntese , Dieta Hiperlipídica/efeitos adversos , Inflamação/metabolismo , Inflamação/patologia , Resistência à Insulina , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Obesidade/metabolismo , Obesidade/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA