Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Comp Neurol ; 529(13): 3336-3358, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34041754

RESUMO

Freshwater snails of the genus Biomphalaria serve as intermediate hosts for the digenetic trematode Schistosoma mansoni, the etiological agent for the most widespread form of intestinal schistosomiasis. As neuropeptide signaling in host snails can be altered by trematode infection, a neural transcriptomics approach was undertaken to identify peptide precursors in Biomphalaria glabrata, the major intermediate host for S. mansoni in the Western Hemisphere. Three transcripts that encode peptides belonging to the FMRF-NH2 -related peptide (FaRP) family were identified in B. glabrata. One transcript encoded a precursor polypeptide (Bgl-FaRP1; 292 amino acids) that included eight copies of the tetrapeptide FMRF-NH2 and single copies of FIRF-NH2 , FLRF-NH2 , and pQFYRI-NH2 . The second transcript encoded a precursor (Bgl-FaRP2; 347 amino acids) that comprised 14 copies of the heptapeptide GDPFLRF-NH2 and 1 copy of SKPYMRF-NH2 . The precursor encoded by the third transcript (Bgl-FaRP3; 287 amino acids) recapitulated Bgl-FaRP2 but lacked the full SKPYMRF-NH2 peptide. The three precursors shared a common signal peptide, suggesting a genomic organization described previously in gastropods. Immunohistochemical studies were performed on the nervous systems of B. glabrata and B. alexandrina, a major intermediate host for S. mansoni in Egypt. FMRF-NH2 -like immunoreactive (FMRF-NH2 -li) neurons were located in regions of the central nervous system associated with reproduction, feeding, and cardiorespiration. Antisera raised against non-FMRF-NH2 peptides present in the tetrapeptide and heptapeptide precursors labeled independent subsets of the FMRF-NH2 -li neurons. This study supports the participation of FMRF-NH2 -related neuropeptides in the regulation of vital physiological and behavioral systems that are altered by parasitism in Biomphalaria.


Assuntos
FMRFamida/genética , Neuropeptídeos/genética , Esquistossomose mansoni/genética , Transcriptoma/genética , Sequência de Aminoácidos , Animais , Biomphalaria , FMRFamida/análise , FMRFamida/metabolismo , Neuropeptídeos/análise , Neuropeptídeos/metabolismo , Imagem Óptica/métodos , Schistosoma mansoni/genética , Schistosoma mansoni/isolamento & purificação , Esquistossomose mansoni/metabolismo
2.
J Comp Neurol ; 529(9): 2347-2361, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33368267

RESUMO

Freshwater snails of the genus Biomphalaria serve as obligatory hosts for the digenetic trematode Schistosoma mansoni, the causative agent for the most widespread form of intestinal schistosomiasis. Within Biomphalaria, S. mansoni larvae multiply and transform into the cercariae form that can infect humans. Trematode development and proliferation is thought to be facilitated by modifications of host behavior and physiological processes, including a reduction of reproduction known as "parasitic castration." As neuropeptides participate in the control of reproduction across phylogeny, a neural transcriptomics approach was undertaken to identify peptides that could regulate Biomphalaria reproductive physiology. The present study identified a transcript in Biomphalaria alexandrina that encodes a peptide belonging to the gonadotropin-releasing hormone (GnRH) superfamily. The precursor and the predicted mature peptide, pQIHFTPDWGNN-NH2 (designated Biom-GnRH), share features with peptides identified in other molluscan species, including panpulmonates, opisthobranchs, and cephalopods. An antibody generated against Biom-GnRH labeled neurons in the cerebral, pedal, and visceral ganglia of Biomphalaria glabrata. GnRH-like immunoreactive fiber systems projected to all central ganglia. In the periphery, immunoreactive material was detected in the ovotestis, oviduct, albumen gland, and nidamental gland. As these structures serve crucial roles in the production, transport, nourishment, and encapsulation of eggs, disruption of the GnRH system of Biomphalaria could contribute to reduced reproductive activity in infected snails.


Assuntos
Biomphalaria/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Schistosoma mansoni/metabolismo , Esquistossomose mansoni/metabolismo , Sequência de Aminoácidos , Animais , Biomphalaria/química , Biomphalaria/genética , Hormônio Liberador de Gonadotropina/análise , Hormônio Liberador de Gonadotropina/genética , Neuropeptídeos , Schistosoma mansoni/genética , Esquistossomose mansoni/genética
3.
J Comp Neurol ; 526(11): 1790-1805, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29633264

RESUMO

The simpler nervous systems of certain invertebrates provide opportunities to examine colocalized classical neurotransmitters in the context of identified neurons and well defined neural circuits. This study examined the distribution of γ-aminobutyric acid-like immunoreactivity (GABAli) in the nervous system of the panpulmonates Biomphalaria glabrata and Biomphalaria alexandrina, major intermediate hosts for intestinal schistosomiasis. GABAli neurons were localized in the cerebral, pedal, and buccal ganglia of each species. With the exception of a projection to the base of the tentacle, GABAli fibers were confined to the CNS. As GABAli was previously reported to be colocalized with markers for dopamine (DA) in five neurons in the feeding network of the euopisthobranch gastropod Aplysia californica (Díaz-Ríos, Oyola, & Miller, 2002), double-labeling protocols were used to compare the distribution of GABAli with tyrosine hydroxylase immunoreactivity (THli). As in Aplysia, GABAli-THli colocalization was limited to five neurons, all of which were located in the buccal ganglion. Five GABAli-THli cells were also observed in the buccal ganglia of two other intensively studied panpulmonate species, Lymnaea stagnalis and Helisoma trivolvis. These findings indicate that colocalization of the classical neurotransmitters GABA and DA in feeding central pattern generator (CPG) interneurons preceded the divergence of euopisthobranch and panpulmonate taxa. These observations also support the hypothesis that heterogastropod feeding CPG networks exhibit a common universal design.


Assuntos
Biomphalaria/metabolismo , Músculos/inervação , Músculos/fisiologia , Tirosina 3-Mono-Oxigenase/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Geradores de Padrão Central/fisiologia , Extremidades/inervação , Extremidades/fisiologia , Comportamento Alimentar , Gânglios dos Invertebrados/citologia , Gânglios dos Invertebrados/fisiologia , Imuno-Histoquímica , Interneurônios/fisiologia , Lymnaea , Músculos/metabolismo , Fibras Nervosas/fisiologia , Neurônios/fisiologia , Especificidade da Espécie
4.
Dev Dyn ; 238(12): 3056-64, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19877280

RESUMO

In the blind cave-dwelling morph of A. mexicanus, the eye degenerates while other sensory systems, such as gustation, are expanded compared to their sighted (surface-dwelling) ancestor. This study compares the development of taste buds along the jaws of each morph. To determine whether cavefish have an altered onset or rate of taste bud development, we fluorescently labeled basal and receptor cells within taste buds over a developmental series. Our results show that taste bud number increases during development in both morphs. The rate of development is, however, accelerated in cavefish; a small difference in taste bud number exists at 5 dpf reaching threefold by 22 dpf. The expansion of taste buds in cavefish is, therefore, detectable after the onset of eye degeneration. This study provides important insights into the timing of taste bud expansion in cavefish as well as enhances our understanding of taste bud development in teleosts in general.


Assuntos
Cegueira , Padronização Corporal/fisiologia , Peixes/embriologia , Papilas Gustativas/embriologia , Animais , Cegueira/embriologia , Cegueira/veterinária , Embrião não Mamífero , Olho/embriologia , Olho/crescimento & desenvolvimento , Peixes/fisiologia , Arcada Osseodentária/citologia , Arcada Osseodentária/embriologia , Modelos Biológicos , Papilas Gustativas/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA