Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Biomol Concepts ; 15(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38345545

RESUMO

Epigenetic analysis is a fundamental part of understanding pathophysiological processes with potential applications in diagnosis, prognosis, and assessment of disease susceptibility. Epigenetic changes have been widely studied in chronic obstructive pulmonary disease (COPD), but currently, there is no molecular marker used to improve the treatment of patients. Furthermore, this progressive disease is a risk factor for the development of more severe COVID-19. Methylation-specific polymerase chain reaction (MSP-PCR) plays an important role in the analysis of DNA methylation profiles, and it is one of the most widely used techniques. In this context, the combination of MSP-PCR with emerging PCR technologies, such as digital PCR (dPCR), results in more accurate analyses of the DNA methylation profile of the genes under study. In this study, we propose the application of the MSP-dPCR technique to evaluate the methylation profile of the ADAM33 gene from saliva samples and lung tissue biopsies of patients with COPD and COVID-19. MSP-dPCR generated a measurable prediction of gene methylation rate, with the potential application of this combined technology for diagnostic and prognostic purposes. It has also proven to be a powerful tool for liquid biopsy applications.


Assuntos
COVID-19 , Doença Pulmonar Obstrutiva Crônica , Humanos , Metilação de DNA , Reação em Cadeia da Polimerase/métodos , Biópsia Líquida , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/genética , COVID-19/diagnóstico , COVID-19/genética , Teste para COVID-19 , Proteínas ADAM/genética
2.
Toxins (Basel) ; 15(12)2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38133204

RESUMO

Podocyte dysfunction plays a crucial role in renal injury and is identified as a key contributor to proteinuria in Fabry disease (FD), primarily impacting glomerular filtration function (GFF). The α3ß1 integrins are important for podocyte adhesion to the glomerular basement membrane, and disturbances in these integrins can lead to podocyte injury. Therefore, this study aimed to assess the effects of chloroquine (CQ) on podocytes, as this drug can be used to obtain an in vitro condition analogous to the FD. Murine podocytes were employed in our experiments. The results revealed a dose-dependent reduction in cell viability. CQ at a sub-lethal concentration (1.0 µg/mL) induced lysosomal accumulation significantly (p < 0.0001). Morphological changes were evident through scanning electron microscopy and immunofluorescence, highlighting alterations in F-actin and nucleus morphology. No significant changes were observed in the gene expression of α3ß1 integrins via RT-qPCR. Protein expression of α3 integrin was evaluated with Western Blotting and immunofluorescence, demonstrating its lower detection in podocytes exposed to CQ. Our findings propose a novel in vitro model for exploring secondary Fabry nephropathy, indicating a modulation of α3ß1 integrin and morphological alterations in podocytes under the influence of CQ.


Assuntos
Doença de Fabry , Integrina alfa3beta1 , Nefropatias , Podócitos , Animais , Camundongos , Doença de Fabry/metabolismo , Integrina alfa3beta1/genética , Integrina alfa3beta1/metabolismo , Nefropatias/metabolismo , Podócitos/metabolismo , Insuficiência Renal
3.
Toxins (Basel) ; 14(3)2022 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-35324674

RESUMO

Uremic toxins are a heterogeneous group of molecules that accumulate in the body due to the progression of chronic kidney disease (CKD). These toxins are associated with kidney dysfunction and the development of comorbidities in patients with CKD, being only partially eliminated by dialysis therapies. Importantly, drugs used in clinical treatments may affect the levels of uremic toxins, their tissue disposition, and even their elimination through the interaction of both with proteins such as albumin and cell membrane transporters. In this context, protein-bound uremic toxins (PBUTs) are highlighted for their high affinity for albumin, the most abundant serum protein with multiple binding sites and an ability to interact with drugs. Membrane transporters mediate the cellular influx and efflux of various uremic toxins, which may also compete with drugs as substrates, and both may alter transporter activity or expression. Therefore, this review explores the interaction mechanisms between uremic toxins and albumin, as well as membrane transporters, considering their potential relationship with drugs used in clinical practice.


Assuntos
Insuficiência Renal Crônica , Toxinas Biológicas , Uremia , Albuminas/metabolismo , Interações Medicamentosas , Feminino , Humanos , Masculino , Proteínas de Membrana Transportadoras , Insuficiência Renal Crônica/metabolismo , Toxinas Biológicas/metabolismo , Toxinas Urêmicas
4.
J Pharm Biomed Anal ; 208: 114460, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34773837

RESUMO

Uremic toxins (UTs) accumulate in the circulation of patients with chronic kidney disease (CKD). High volume hemodiafiltration (HDF) improves clearance of low and medium molecular weight UTs compared to HD. The present study is a post-hoc analysis comparing the metabolomic profile in serum from patients under high flux HD (hf-HD) and HDF in HDFIT, a multicentric randomized controlled trial (RCTs). Per protocol, serum samples were collected pre- and post- dialysis treatments at randomization (baseline) and at the end of the follow up (6 months) and stored in a biorepository. Random (pre- and post-dialysis) samples from nine patients in study arm were selected at baseline and at the end of the follow up. To compare the samples, 26 possibly matching metabolites were identified by a t-test among the four groups using 1H nuclear magnetic resonance (NMR). To evaluate the comparison between the modalities is a single treatment session, the clearance rates (CRs) of each metabolite were calculated based on pre-dialysis and post-dialysis samples. In addition, to evaluate to effect of UT removal during the trial follow up period, the pre-dialysis metabolite concentrations at the baseline and at 6 months were compared among the two arms of the study. There was no significant difference between in the single session CRs of metabolites when hf-HD and HDF were compared. On the other hand, the comparison between baseline and 6-month (long-term evolution) led to the identification of 16 metabolites that differentiated the hf-HD and the HDF evolutions. Most of these 16 metabolites are involved in several important metabolic pathways, such as metabolism of phenylalanine and biosynthesis of phenylalanine, tyrosine, and tryptophan, which are related to UTs and cardiovascular disease development. Although no difference was observed between hf-HD and HDF samples before and after a single session, concentrations of CKD-relevant metabolites and associated pathologies were stable in the HDF samples, but not in the hf-HD samples, over the six-month period, suggesting that HDF enhances long-term stability.


Assuntos
Hemodiafiltração , Falência Renal Crônica , Humanos , Espectroscopia de Ressonância Magnética , Metabolômica , Diálise Renal , Toxinas Urêmicas
5.
Toxins (Basel) ; 13(11)2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34822562

RESUMO

Cardiorenal syndrome (CRS) is described as primary dysfunction in the heart culminating in renal injury or vice versa. CRS can be classified into five groups, and uremic toxin (UT) accumulation is observed in all types of CRS. Protein-bound uremic toxin (PBUT) accumulation is responsible for permanent damage to the renal tissue, and mainly occurs in CRS types 3 and 4, thus compromising renal function directly leading to a reduction in the glomerular filtration rate (GFR) and/or subsequent proteinuria. With this decrease in GFR, patients may need renal replacement therapy (RRT), such as peritoneal dialysis (PD). PD is a high-quality and home-based dialysis therapy for patients with end-stage renal disease (ESRD) and is based on the semi-permeable characteristics of the peritoneum. These patients are exposed to factors which may cause several modifications on the peritoneal membrane. The presence of UT may harm the peritoneum membrane, which in turn can lead to the formation of extracellular vesicles (EVs). EVs are released by almost all cell types and contain lipids, nucleic acids, metabolites, membrane proteins, and cytosolic components from their cell origin. Our research group previously demonstrated that the EVs can be related to endothelial dysfunction and are formed when UTs are in contact with the endothelial monolayer. In this scenario, this review explores the mechanisms of EV formation in CRS, uremia, the peritoneum, and as potential biomarkers in peritoneal dialysis.


Assuntos
Vesículas Extracelulares/metabolismo , Rim/metabolismo , Miocárdio/metabolismo , Diálise Peritoneal , Uremia/metabolismo , Toxinas Urêmicas/metabolismo , Animais , Síndrome Cardiorrenal , Coração/fisiopatologia , Humanos , Rim/fisiopatologia , Falência Renal Crônica , Camundongos , Ratos
6.
Cells ; 10(8)2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34440708

RESUMO

Over the development of eukaryotic cells, intrinsic mechanisms have been developed in order to provide the ability to defend against aggressive agents. In this sense, a group of proteins plays a crucial role in controlling the production of several proteins, guaranteeing cell survival. The heat shock proteins (HSPs), are a family of proteins that have been linked to different cellular functions, being activated under conditions of cellular stress, not only imposed by thermal variation but also toxins, radiation, infectious agents, hypoxia, etc. Regarding pathological situations as seen in cardiorenal syndrome (CRS), HSPs have been shown to be important mediators involved in the control of gene transcription and intracellular signaling, in addition to be an important connector with the immune system. CRS is classified as acute or chronic and according to the first organ to suffer the injury, which can be the heart (CRS type 1 and type 2), kidneys (CRS type 3 and 4) or both (CRS type 5). In all types of CRS, the immune system, redox balance, mitochondrial dysfunction, and tissue remodeling have been the subject of numerous studies in the literature in order to elucidate mechanisms and propose new therapeutic strategies. In this sense, HSPs have been targeted by researchers as important connectors between kidney and heart. Thus, the present review has a focus to present the state of the art regarding the role of HSPs in the pathophysiology of cardiac and renal alterations, as well their role in the kidney-heart axis.


Assuntos
Síndrome Cardiorrenal/metabolismo , Proteínas de Choque Térmico/metabolismo , Rim/metabolismo , Miocárdio/metabolismo , Animais , Síndrome Cardiorrenal/genética , Síndrome Cardiorrenal/fisiopatologia , Regulação da Expressão Gênica , Coração/fisiopatologia , Proteínas de Choque Térmico/genética , Humanos , Rim/fisiopatologia , Transdução de Sinais
7.
J Ethnopharmacol ; 281: 114512, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34384848

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cancer is an inflammatory disease because carcinogenesis and tumor progression depend on intrinsic and extrinsic inflammatory pathways. Although species of the genus Aspidosperma are widely used to treat tumors, and there is ethnopharmacological evidence for traditional use of the species A. subincanum as an anti-inflammatory agent, its antineoplastic potential is unknown. AIM OF THE STUDY: To evaluate toxic effects of the indole alkaloid-rich fraction (IAF) of A. subincanum on the MCF7 cell line and identify some of the anti-inflammatory mechanisms involved. MATERIALS AND METHODS: Chromatographic analyses were performed by ultra-high-performance liquid chromatography with electrospray ionization mass spectrometry, and cytotoxic and antiproliferative effects of IAF were verified by MTT and clonogenic assays. Cell cycle alterations were analyzed by measuring DNA content, while propidium iodide and acridine orange staining was performed to determine the type of induced cell death. The expression of apoptosis markers and proteins involved in cell proliferation and survival pathways was analyzed by immunoblotting, RT-qPCR, and ELISAs. Interference with redox status was investigated using a DCFH-DA probe and by measuring catalase activity. RESULTS: Chromatographic analyses showed that IAF is a complex mixture containing indole alkaloids. IAF selectively exerted toxic and antiproliferative effects, elevating the Bax/Bcl-xL ratio and inducing apoptosis in MCF7 cells. IAF decreased intracellular reactive oxygen species levels and increased catalase activity, while reducing the IL-8 level and suppressing COX-2 expression. CONCLUSIONS: IAF induces apoptosis in MCF7 cells by suppressing COX-2 expression while reducing IL-8 levels and intracellular content of reactive oxygen species.


Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Aspidosperma , Alcaloides Indólicos/farmacologia , Extratos Vegetais/farmacologia , Linhagem Celular Tumoral , Fenômenos Fisiológicos Celulares/efeitos dos fármacos , Ciclo-Oxigenase 2/genética , Humanos , Interleucina-8/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
8.
Front Physiol ; 12: 686249, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054588

RESUMO

The kidneys and heart share functions with the common goal of maintaining homeostasis. When kidney injury occurs, many compounds, the so-called "uremic retention solutes" or "uremic toxins," accumulate in the circulation targeting other tissues. The accumulation of uremic toxins such as p-cresyl sulfate, indoxyl sulfate and inorganic phosphate leads to a loss of a substantial number of body functions. Although the concept of uremic toxins is dated to the 1960s, the molecular mechanisms capable of leading to renal and cardiovascular injuries are not yet known. Besides, the greatest toxic effects appear to be induced by compounds that are difficult to remove by dialysis. Considering the close relationship between renal and cardiovascular functions, an understanding of the mechanisms involved in the production, clearance and overall impact of uremic toxins is extremely relevant for the understanding of pathologies of the cardiovascular system. Thus, the present study has as main focus to present an extensive review on the impact of uremic toxins in the cardiovascular system, bringing the state of the art on the subject as well as clinical implications related to patient's therapy affected by chronic kidney disease, which represents high mortality of patients with cardiac comorbidities.

9.
Toxicol Lett ; 347: 12-22, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33945863

RESUMO

p-Cresyl sulfate (PCS), indoxyl sulfate (IS), and inorganic phosphate (Pi) are uremic toxins found in chronic kidney disease (CKD) that are closely related to endothelial extracellular vesicles (EVs) formation. The present study aimed to understand the role of EVs and their role in cell adhesion and migration, inflammation, and oxidative stress. Human endothelial cells were treated with PCS, IS, and Pi in pre-established uremic and kinetic recommendations. EVs were characterized using scanning electron microscopy, flow cytometry, and NanoSight assays. The concentrations of EVs were established using Alamar Blue and MTT assays. Cell adhesion to extracellular matrix proteins was analyzed using an adhesion assay. Inflammation and oxidative stress were assessed by vascular cell adhesion molecule-1 expression/monocyte migration and reactive oxygen species production, respectively. The capacity of EVs to stimulate endothelial cell migration was evaluated using a wound-healing assay. Our data showed that endothelial cells stimulated with uremic toxins can induce the formation of EVs of different sizes, quantities, and concentrations, depending on the uremic toxin used. Cell adhesion was significantly (P < 0.01) stimulated in cells exposed to PCS-induced extracellular vesicles (PCSEVs) and inorganic phosphate-induced extracellular vesicles (PiEVs). Cell migration was significantly (P < 0.05) stimulated by PCSEVs. VCAM-1 expression was evident in cells treated with PCSEVs and IS-induced extracellular vesicles (ISEVs). EVs are not able to stimulate monocyte migration or oxidative stress. In conclusion, EVs may be a biomarker of endothelial injury and the inflammatory process, playing an important role in cell-to-cell communication and pathophysiological processes, although more studies are needed to better understand the mechanisms of EVs in uremia.


Assuntos
Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Cresóis/toxicidade , Células Endoteliais/efeitos dos fármacos , Vesículas Extracelulares/efeitos dos fármacos , Indicã/toxicidade , Mediadores da Inflamação/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosfatos/toxicidade , Ésteres do Ácido Sulfúrico/toxicidade , Uremia/patologia , Linhagem Celular , Células Endoteliais/metabolismo , Células Endoteliais/ultraestrutura , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/ultraestrutura , Humanos , Transdução de Sinais , Uremia/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
10.
Clinics (Sao Paulo) ; 76: e1821, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33624705

RESUMO

OBJECTIVES: This study aimed to evaluate the potential anti-inflammatory effects of vitamin D supplementation under uremic conditions, both in vivo and in vitro, and its effects on the parameters of mineral metabolism. METHODS: Thirty-two hemodialysis patients were randomly assigned to receive placebo (N=14) or cholecalciferol (N=18) for six months. Serum levels of calcium, phosphate, total alkaline phosphatase, intact parathyroid hormone (iPTH), and vitamin D were measured at baseline and after three and six months. The levels of fibroblast growth factor-23 (FGF-23), interleukin-1ß (IL-1ß), and high-sensitivity C-reactive protein (hs-CRP) were also measured at baseline and at six months. Human monocytes were used for in vitro experiments and treated with cholecalciferol (150 nM) and uremic serum. Cell viability, reactive oxygen species (ROS) production, and cathelicidin (CAMP) expression were evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, dichloro-dihydro-fluorescein diacetate assay, and real time-quantitative polymerase chain reaction, respectively. RESULTS: Both patient groups were clinically and biochemically similar at baseline. After six months, the levels of vitamin D and iPTH were higher and lower, respectively, in the cholecalciferol group than in the placebo group (p<0.05). There was no significant difference between the parameters of mineral metabolism, such as IL-1ß and hs-CRP levels, in both groups. Treatment with uremic serum lowered the monocyte viability (p<0.0001) and increased ROS production (p<0.01) and CAMP expression (p<0.05); these effects were counterbalanced by cholecalciferol treatment (p<0.05). CONCLUSIONS: Thus, cholecalciferol supplementation is an efficient strategy to ameliorate hypovitaminosis D in hemodialysis patients, but its beneficial effects on the control of secondary hyperparathyroidism are relatively unclear. Even though cholecalciferol exhibited anti-inflammatory effects in vitro, its short-term supplementation was not effective in improving the inflammatory profile of patients on hemodialysis, as indicated by the IL-1ß and hs-CRP levels.


Assuntos
Colecalciferol , Deficiência de Vitamina D , Anti-Inflamatórios/uso terapêutico , Colecalciferol/uso terapêutico , Suplementos Nutricionais , Fator de Crescimento de Fibroblastos 23 , Humanos , Hormônio Paratireóideo/uso terapêutico , Diálise Renal , Vitamina D
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA