Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Genet Genomics ; 296(6): 1299-1311, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34564766

RESUMO

A phylogenomic study conducted with different bioinformatic tools such as TYGS, REALPHY and AAI comparisons revealed a high rate of misidentified Streptomyces albus genomes in GenBank. Only 9 of the 18 annotated genomes available in the public database were correctly identified as S. albus species. The pangenome of the nine in silico confirmed S. albus genomes was almost closed. Lignocellulosic agroresidues were a common niche among strains of the S. albus clade while carbohydrate active enzymes (CAZymes) were highly conserved. Relevant enzymes for cellulose degradation such as beta glucosidases belonging to the GH1 family, a GH6 cellulase and a monooxygenase AA10-CBM2 were encoded by all S. albus genomes. Among them, one GH1 glycosidase would be regulated by CebR. However, this regulatory mechanism was not confirmed for other genes related to cellulose degradation. Based on AntiSMASH predictions, the core secondary metabolome of S. albus encompassed a total of 23 biosynthetic gene clusters (BGCs), where 4 were related to common metabolites within Streptomyces genus. Species specific BGCs included those related to pseudouridimycin and xantholipin. Additionally, four BGCs encoded putative derivatives of ibomycin, the lasso peptide SSV-2086, the lanthipeptide SapB and the terpene isorenieratene. Known metabolites could not be assigned to ten BGCs and three clusters did not match with any previously described BGC. The core genome of S. albus retrieved from nine closely related genomes revealed a high potential for the discovery of novel bioactive metabolites and underexplored regulatory genomic elements related to lignocellulose deconstruction.


Assuntos
Celulases/genética , Genoma Bacteriano/genética , Lignina/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Bases de Dados Genéticas , Glicosídeo Hidrolases/genética , Metaboloma/genética , Oxigenases de Função Mista/genética , Família Multigênica/genética , Filogenia , Metabolismo Secundário/genética
2.
Appl Biochem Biotechnol ; 184(2): 484-499, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28755245

RESUMO

Fatty acid desaturases (FADs) catalyze the introduction of a double bond into acyl chains. Two FAD groups have been identified in plants: acyl-acyl carrier proteins (ACPs) and acyl-lipid or membrane-bound FAD. The former catalyze the conversion of 18:0 to 18:1 and to date have only been identified in plants. The latter are found in eukaryotes and bacteria and are responsible for multiple desaturations. In this study, we identified 82 desaturase gene and protein sequences from 10 grass species deposited in GenBank that were analyzed using bioinformatic approaches. Subcellular localization predictions of desaturase family revealed their localization in plasma membranes, chloroplasts, endoplasmic reticula, and mitochondria. The in silico mapping showed multiple chromosomal locations in most species. Furthermore, the presence of the characteristic histidine domains, the predicted motifs, and the finding of transmembrane regions strongly support the protein functionality. The identification of putative regulatory sites in the promotor and the expression profiles revealed the wide range of pathways in which fatty acid desaturases are involved. This study is an updated survey on desaturases of grasses that provides a comprehensive insight into diversity and evolution. This characterization is a necessary first step before considering these genes as candidates for new biotechnological approaches.


Assuntos
Simulação por Computador , Ácidos Graxos Dessaturases , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Genes de Plantas/fisiologia , Proteínas de Plantas , Poaceae , Motivos de Aminoácidos , Bases de Dados Genéticas , Ácidos Graxos Dessaturases/biossíntese , Ácidos Graxos Dessaturases/química , Ácidos Graxos Dessaturases/genética , Proteínas de Plantas/biossíntese , Proteínas de Plantas/química , Proteínas de Plantas/genética , Poaceae/enzimologia , Poaceae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA