Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 238: 124357, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37028634

RESUMO

Animal venoms and their chemical compounds have aroused both empirical and scientific attention for ages. However, there has been a significant increase in scientific investigations in recent decades, allowing the production of various formulations that are helping in the development of many important tools for biotechnological, diagnostic, or therapeutic use, both in human and animal health, as well as in plants. Venoms are composed of biomolecules and inorganic compounds that may have physiological and pharmacological activities that are not related to their principal actions (prey immobilization, digestion, and defense). Snake venom toxins, mainly enzymatic and non-enzymatic proteins, and peptides have been identified as potential prototypes for new drugs and/or models for the development of pharmacologically active structural domains for the treatment of cancer, cardiovascular diseases, neurodegenerative and autoimmune diseases, pain, and infectious-parasitic diseases. This minireview aims to provide an overview of the biotechnological potential of animal venoms, with a focus on snakes, and to introduce the reader to the fascinating world of Applied Toxinology, where animal biodiversity can be used to develop therapeutic and diagnostic applications for humans.


Assuntos
Neoplasias , Venenos de Serpentes , Animais , Humanos , Venenos de Serpentes/química , Serpentes/metabolismo , Proteínas/química , Peptídeos/farmacologia , Neoplasias/tratamento farmacológico
3.
J Proteomics ; 249: 104379, 2021 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-34534714

RESUMO

We report the first proteomics analyses of the venoms of two poorly studied snakes, the Manabi hognosed pitviper Porthidium arcosae endemic to the western coastal province of Manabí (Ecuador), and the Costa Rican hognosed pitviper P. volcanicum with distribution restricted to South Pacific Costa Rica and western Panamá. These venom proteomes share a conserved compositional pattern reported in four other congeneric species within the clade of South American Porthidium species, P. nasutum, P. lansbergii, P. ophryomegas, and P. porrasi. The paraspecific immunorecognition profile of antivenoms produced in Costa Rica (ICP polyvalent), Perú (Instituto Nacional de Salud) and Brazil (soro antibotrópico pentavalente, SAB, from Instituto Butantan) against the venom of P. arcosae was investigated through a third-generation antivenomics approach. The maximal venom-binding capacities of the investigated antivenoms were 97.1 mg, 21.8 mg, and 25.7 mg of P. arcosae venom proteins per gram of SAB, ICP, and INS-PERU antibody molecules, respectively, which translate into 28.4 mg, 13.1 mg, and 15.2 mg of total venom proteins bound per vial of SAB, ICP, and INS-PERU AV. The antivenomics results suggest that 21.8%, 7.8% and 6.1% of the SAB, ICP, and INS-PERU antibody molecules recognized P. arcosae venom toxins. The SAB antivenom neutralized P. arcosae venom's lethality in mice with an ED50 of 31.3 mgV/g SAB AV. This preclinical neutralization paraspecificity points to Brazilian SAB as a promising candidate for the treatment of envenomings by Ecuadorian P. arcosae. BIOLOGICAL SIGNIFICANCE: Assessing the preclinical efficacy profile of antivenoms against homologous and heterologous medically relevant snake venoms represents an important goal towards defining the biogeographic range of their clinical utility. This is particularly relevant in regions, such as Mesoamerica, where a small number of pharmaceutical companies produce antivenoms against the venoms of a small number of species of maximum medical relevance among the local rich herpetofauna, leaving a wide range of snakes of secondary medical relevance, but also causing life-threatening human envenomings without nominal clinical coverage. This work is part of a larger project aiming at mapping the immunological characteristics of antivenoms generated in Latin American countries towards venoms of such poorly studied snakes of the local and neighboring countries' herpetofauna. Here we report the proteomics characterization of the Manabi hognosed pitviper Porthidium arcosae endemic to the western coastal province of Manabí (Ecuador), and the Costa Rican hognosed pitviper P. volcanicum with distribution restricted to southwestern Costa Rica, the antivenomics assessment of three bothropoid commercial antivenoms produced in Costa Rica, Perú, and Brazil against the venom components of P. arcosae, and the in vivo capacity of the Brazilian soro antibotrópico pentavalente (SAB) from Instituto Butantan to neutralize the murine lethality of P. arcosae venom. The preclinical paraspecific ED50 of 31.3 mg of P. arcosae venom per gram of antivenom points to Brazilian SAB as a promising candidate for the treatment of envenomings by the Manabi hognosed pitviper P. arcosae.


Assuntos
Venenos de Crotalídeos , Crotalinae , Animais , Antivenenos , Camundongos , Proteoma , Proteômica , Venenos de Serpentes
4.
Chem Biol Interact ; 346: 109581, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34302801

RESUMO

Bothrops asper is one of the most important snake species in Central America, mainly because of its medical importance in countries like Ecuador, Panama and Costa Rica, where this species causes a high number of snakebite accidents. Several basic phospholipases A2 (PLA2s) have been previously characterized from B. asper venom, but few studies have been carried out with its acidic isoforms. In addition, since snake venom is a rich source of bioactive substances, it is necessary to investigate the biotechnological potential of its components. In this context, this study aimed to carry out the biochemical characterization of PLA2 isoforms isolated from B. asper venom and to evaluate the antiparasitic potential of these toxins. The venom and key fractions were subjected to different chromatographic steps, obtaining nine PLA2s, four acidic ones (BaspAc-I, BaspAc-II, BaspAc-III and BaspAc-IV) and five basic ones (BaspB-I, BaspB-II, BaspB-III, BaspB-IV and BaspB-V). The isoelectric points of the acidic PLA2s were also determined, which presented values ranging between 4.5 and 5. The findings indicated the isolation of five unpublished isoforms, four Asp49-PLA, corresponding to the group of acidic isoforms, and one Lys49-PLA2-like. Acidic PLA2s catalyzed the degradation of all substrates evaluated; however, for the basic PLA2s, there was a preference for phosphatidylglycerol and phosphatidic acid. The antiparasitic potential of the toxins was evaluated, and the acidic PLA2s demonstrated action against the epimastigote forms of T. cruzi and promastigote forms of L. infantum, while the basic PLA2s BaspB-II and BaspB-IV showed activity against P. falciparum. The results indicated an increase of up to 10 times in antiplasmodial activity, when the Asp49-PLA2 and Lys49-PLA2 were associated with one another, denoting synergistic action between these PLA2 isoforms. These findings correspond to the first report of synergistic antiplasmodial action for svPLA2s, demonstrating that these molecules may be important targets in the search for new antiparasitic agents.


Assuntos
Antiprotozoários/farmacologia , Fosfolipases A2/química , Plasmodium falciparum/efeitos dos fármacos , Venenos de Serpentes/metabolismo , Sequência de Aminoácidos , Animais , Antiprotozoários/química , Antiprotozoários/isolamento & purificação , Bothrops/metabolismo , Sinergismo Farmacológico , Ponto Isoelétrico , Leishmania infantum/efeitos dos fármacos , Panamá , Testes de Sensibilidade Parasitária , Fosfolipases A2/isolamento & purificação , Fosfolipases A2/farmacologia , Isoformas de Proteínas/química , Isoformas de Proteínas/isolamento & purificação , Isoformas de Proteínas/farmacologia , Alinhamento de Sequência
5.
Int J Biol Macromol ; 175: 572-585, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33529631

RESUMO

A basic sPLA2 (D49) from the venom of snake Agkistrodon piscivorus leucostoma (AplTX-II) was isolated, purified and characterized. We determined the enzymatic and pharmacological profiles of this toxin. AplTX-II was isolated with a high level of purity through reverse phase chromatography and molecular exclusion. The enzyme showed pI 9.48 and molecular weight of 14,003 Da. The enzymatic activity of the AplTX-II depended on Ca2+ pH and temperature. The comparison of the primary structure with other sPLA2s revealed that AplTX-II presented all the structural reasons expected for a basic sPLA2s. Additionally, we have resolved its structure with the docked synthetic substrate NOBA (4-nitro-3-octanoyloxy benzoic acid) by homology modeling, and performed MD simulations with explicit solvent. Structural similarities were found between the enzyme's modeled structure and other snake sPLA2 X-Ray structures, available in the PDB database. NOBA and active-site water molecules spontaneously adopted stable positions and established interactions in full agreement with the reaction mechanism, proposed for the physiological substrate, suggesting that NOBA hydrolysis is an excellent model to study phospholipid hydrolysis.


Assuntos
Agkistrodon/metabolismo , Fosfolipases A2 Secretórias/isolamento & purificação , Venenos de Serpentes/química , Agkistrodon/fisiologia , Sequência de Aminoácidos , Animais , Venenos de Crotalídeos/enzimologia , Peso Molecular , Fosfolipases A2 Secretórias/química , Fosfolipases A2 Secretórias/metabolismo , Fosfolipídeos/química , Venenos de Serpentes/isolamento & purificação , Serpentes
6.
Toxicon ; 193: 63-72, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33503404

RESUMO

Bothrops atrox is the most clinically relevant snake species within the Amazon region, which includes Ecuadorian territories. It comprises a large distribution, which could contribute to the genetic and venomic variation identified in the species. The high variability and protein isoform diversity of its venom are of medical interest, since it can influence the clinical manifestations caused by envenomation and its treatment. However, in Ecuador there is insufficient information on the diversity of venomic phenotypes, even of relevant species such as B. atrox. Here, we characterized the biochemical and toxicological profiles of the venom of six B. atrox individuals from the Ecuadorian Amazon. Differences in catalytic activities of toxins, elution profiles in liquid chromatography, electrophoretic patterns, and toxic effects among the analyzed samples were identified. Nonetheless, in the preclinical testing of antivenom, two samples from Mera (Pastaza) required a higher dose to achieve total neutralization of lethality and hemorrhage. Taken together, these data highlight the importance of analyzing individual venoms in studies focused on the outcomes of envenoming.


Assuntos
Bothrops , Venenos de Crotalídeos , Animais , Antivenenos/uso terapêutico , Venenos de Crotalídeos/toxicidade , Equador , Serpentes
7.
Curr Issues Mol Biol ; 44(1): 46-62, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35723383

RESUMO

The membrane-active nature of phospholipase A2-derived peptides makes them potential candidates for antineoplastic and antibacterial therapies. Two short 13-mer C-terminal fragments taken from snake venom Lys49-PLA2 toxins (p-AppK and p-Acl), differing by a leucine/phenylalanine substitution, were synthesized and their bioactivity was evaluated. Their capacity to interfere with the survival of Gram-positive and Gram-negative bacteria as well as with solid and liquid tumors was assessed in vitro. Toxicity to red blood cells was investigated via in silico and in vitro techniques. The mode of action was mainly studied by molecular dynamics simulations and membrane permeabilization assays. Briefly, both peptides have dual activity, i.e., they act against both bacteria, including multidrug-resistant strains and tumor cells. All tested bacteria were susceptible to both peptides, Pseudomonas aeruginosa being the most affected. RAMOS, K562, NB4, and CEM cells were the main leukemic targets of the peptides. In general, p-Acl showed more significant activity, suggesting that phenylalanine confers advantages to the antibacterial and antitumor mechanism, particularly for osteosarcoma lines (HOS and MG63). Peptide-based treatment increased the uptake of a DNA-intercalating dye by bacteria, suggesting membrane damage. Indeed, p-AppK and p-Acl did not disrupt erythrocyte membranes, in agreement with in silico predictions. The latter revealed that the peptides deform the membrane and increase its permeability by facilitating solvent penetration. This phenomenon is expected to catalyze the permeation of solutes that otherwise could not cross the hydrophobic membrane core. In conclusion, the present study highlights the role of a single amino acid substitution present in natural sequences towards the development of dual-action agents. In other words, dissecting and fine-tuning biomembrane remodeling proteins, such as snake venom phospholipase A2 isoforms, is again demonstrated as a valuable source of therapeutic peptides.

8.
Toxicon X ; 7: 100051, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32760910

RESUMO

Snakebite envenoming is a neglected disease of public health concern. Most snakebite accidents occur in developing countries. In Ecuador, 17 viper species are responsible for 99% of official accidents, and ten species are in critical conservation states. This report analyzes the snakebite incident cases and mortality rates in Ecuador between 2014 and 2019. The data obtained from the national surveillance system suggests that the incidence and mortality rates remained constant. The geographic region with the highest incidence rates is the Amazonian region. National policies are urgently needed to prevent snakebite accidents and to protect snakes in danger of extinction.

9.
Artigo em Inglês | MEDLINE | ID: mdl-31911190

RESUMO

Bothrops asper and Bothrops atrox are important venomous snakes from Ecuador responsible for the most of ophidic accidents, which in the past were treated with a national polyvant antivenom. For years, the venom pools were collected and stored at room temperature in a laboratory. Taking into account the controversial ability of desiccated samples to retain their biological effects and enzymatic activities, we investigated the biochemical and toxicological properties of venoms after years of storage. The proteomic profiles of historical venoms analyzed by high-performance liquid chromatography and electrophoresis are very similar. The fresh batches of venom were more lethal than those stored for years, just as the initial and current LD50 values of these samples changed. Significant differences were showed in the myotoxic and hemorrhagic activity of some venom pools, while no significant statistical differences were found for the edema activity. The enzymatic assays revealed a variation in proteolytic activity on azocasein and phospholipase A2 activity, and low differences were reported for thrombin-like serine protease activity. The maintenance of the proteomic profile and certain toxicological activities convert this venom library in a valuable source for research purposes. Nonetheless, the significative reduction of toxicological activities, such as hemorrhagic activity not feasible using these samples for the antivenom production.


Assuntos
Venenos de Crotalídeos/química , Animais , Bothrops/metabolismo , Dessecação , Equador , Estabilidade Enzimática , Dose Letal Mediana , Masculino , Camundongos , Proteômica , Manejo de Espécimes
10.
Artigo em Inglês | MEDLINE | ID: mdl-31454702

RESUMO

Phospholipase A2 toxins present in snake venoms interact with biological membranes and serve as structural models for the design of small peptides with anticancer, antibacterial and antiparasitic properties. Oligoarginine peptides are capable of increasing cell membrane permeability (cell penetrating peptides), and for this reason are interesting delivery systems for compounds of pharmacological interest. Inspired by these two families of bioactive molecules, we have synthesized two 13-mer peptides as potential antileishmanial leads gaining insights into structural features useful for the future design of more potent peptides. The peptides included p-Acl, reproducing a natural segment of a Lys49 PLA2 from Agkistrodon contortrix laticinctus snake venom, and its p-AclR7 analogue where all seven lysine residues were replaced by arginines. Both peptides were active against promastigote and amastigote forms of Leishmania (L.) amazonensis and L. (L.) infantum, while displaying low cytotoxicity for primary murine macrophages. Spectrofluorimetric studies suggest that permeabilization of the parasite's cell membrane is the probable mechanism of action of these biomolecules. Relevantly, the engineered peptide p-AclR7 was more active in both life stages of Leishmania and induced higher rates of ethidium bromide incorporation than its native template p-Acl. Taken together, the results suggest that short peptides based on phospholipase toxins are potential scaffolds for development of antileishmanial candidates. Moreover, specific amino acid substitutions, such those herein employed, may enhance the antiparasitic action of these cationic peptides, encouraging their future biomedical applications.


Assuntos
Venenos de Crotalídeos/farmacologia , Leishmania infantum/efeitos dos fármacos , Leishmaniose Visceral/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Peptídeos/farmacologia , Fosfolipases A2/farmacologia , Agkistrodon/metabolismo , Animais , Células Cultivadas , Venenos de Crotalídeos/síntese química , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos BALB C , Peptídeos/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA