Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
NPJ Sci Food ; 8(1): 6, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218984

RESUMO

Sugarcane juice is a nutritious and energetic drink. For its processing, the use of supercritical carbon dioxide (SC-CO2) technology as an intervention potentially capable of rendering a high quality product can be considered. This study evaluated the combined effect of SC-CO2 and mild temperatures, primarily aiming for the reduction of endogenous microorganisms and enzymes in sugarcane juice (pH~5.5). Pressures (P) ranging from 74 to 351 bar, temperatures (T) between 33 and 67 °C, and holding times (t) between 20 and 70 min were tested in a central composite rotational design. Seventeen trials were performed, comprising three replicates at the central points. Counts of aerobic mesophiles, molds and yeasts, lactic acid bacteria and coliforms at 45 °C, determination of polyphenol oxidase (PPO) and peroxidase (POD) activities, and measurement of color parameters in freshly extracted and processed juice's samples were carried out. The pH of fresh and processed juice varied between 4.6 and 6.0, and between 4.6 and 6.3, respectively. The number of decimal reductions achieved in mesophiles, molds and yeasts, lactic acid bacteria and coliforms varied between 0.1 and 3.9, 2.1 and 4.1, 0.0 and 2.1, and 0.3 to 2.5, respectively. The percentages of PPO reduction ranged from 3.51% to 64.18%. Regarding the POD, reductions between 0.27% and 41.42% were obtained. Color variations between fresh and processed samples varied between 2.0 and 12.3. As for mesophiles, molds and yeasts reduction, and soluble solids variation, none of the variables or their interactions were significant. In terms of polyphenol oxidase (PPO) reduction, only t was significant; however, T, t, and the interaction between them significantly affected the peroxidase (POD) reduction. In regards to pH variation, P, and the interaction between T and t were significant. P, T, t, and the interaction between T and t played a significant effect on color. The combination of mild temperatures and SC-CO2 can be potentially used for cane juice preservation.

2.
Food Sci Technol Int ; : 10820132231172363, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37128651

RESUMO

Pectin methylesterase (PME) is the target-enzyme in orange juice processing, and its inactivation preserves the original juice's cloud, a valuable quality attribute for consumers. This study was primarily undertaken to evaluate the combination of supercritical carbon dioxide (SC-CO2) and mild temperatures on PME inactivation in the juice. Physicochemical and color parameters were also evaluated. Pressures (P) in the range of 74 to 351 bar, temperatures (T) between 33°C and 67°C, and holding times (t) varying from 20 to 70 min were tested using a central composite rotational design. Determination of PME activity, pH, titratable acidity, soluble solids, ratio, lightness, °hue and chroma in freshly extracted/raw and treated juice samples, and total color difference (TCD) between raw and treated juice were carried out. The percentage of PME reduction widely ranged from 13.7% to 91.8%. The variable P had a significant effect (p ≤ 0.05) on TCD and acidity variation. T exhibited a significant effect on the PME reduction, TCD, and soluble solids variation; however, t impacted on the soluble solids variation only. The interaction between P and t (P.t) affected the soluble solids and acidity variation, and T.t affected TCD. The combination of SC-CO2 and mild temperatures is potentially capable of inactivating PME in orange juice.

3.
Molecules ; 27(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36364352

RESUMO

Reducing waste, using byproducts, and natural food additives are important sustainability trends. In this context, the aim of this study was to produce and evaluate a natural food dye, extracted from pumpkin byproducts, powdered and protected by spray-chilling (SC) and a combination of spray-drying and spray-chilling techniques (SDC). The extract was obtained using ethanol as solvent; vegetable fat and gum Arabic were used as carriers. Formulations were prepared with the following core:carrier ratios: SC 20 (20:80), SC 30 (30:70), SC 40 (40:60), SDC 5 (5:95), SDC 10 (10:90), and SDC 15 (15:85). The physicochemical properties of the formed microparticles were characterised, and their storage stability was evaluated over 90 days. The microparticles exhibited colour variation and size increase over time. SDC particles exhibited the highest encapsulation efficiency (95.2-100.8%) and retention of carotenoids in the storage period (60.8-89.7%). Considering the carotenoid content and its stability, the optimal formulation for each process was selected for further analysis. All of the processes and formulations produced spherical particles that were heterogeneous in size. SDC particles exhibited the highest oxidative stability index and the highest carotenoid release in the intestinal phase (32.6%). The use of combined microencapsulation technologies should be considered promising to protect carotenoid compounds.


Assuntos
Cucurbita , Cucurbita/química , Pós , Carotenoides/química , Composição de Medicamentos/métodos , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA