Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 12: 652477, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975776

RESUMO

Here, we estimate fast changes in the fluidity of Sinorhizobium meliloti membranes submitted to cyclic temperature changes (10°C-40°C-10°C) by monitoring the fluorescence polarization (P) of DPH and TMA-DPH of the whole cell (WC) as well as in its outer (OM) and inner (IM) membranes. Additionally, the long-term response to thermal changes is demonstrated through the dynamics of the phospholipid and fatty acid composition in each membrane. This allowed membrane homeoviscous adaptation by the return to optimal fluidity levels as measured by the PDPH/TMA-DPH in WC, OM, IM, and multilamellar vesicles of lipids extracted from OM and IM. Due to probe-partitioning preferences and membranes' compositional characteristics, DPH and TMA-DPH exhibit different behaviors in IM and OM. The rapid effect of cyclic temperature changes on the P was the opposite in both membranes with the IM being the one that exhibited the thermal behavior expected for lipid bilayers. Interestingly, only after the incubation at 40°C, cells were unable to recover the membrane preheating P levels when cooled up to 10°C. Solely in this condition, the formation of threads and nodular structures in Medicago sativa infected with S. meliloti were delayed, indicating that the symbiotic interaction was partially altered but not halted.

2.
Appl Microbiol Biotechnol ; 104(23): 10145-10164, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33025128

RESUMO

Immobilizarion of PGPR for agricultural applications aims to provide temporary physical protection from stressful environmental conditions and the gradual release of cells for successful root colonization, release the cells gradually. In this work, we immobilized Bradyrhizobium sp. SEMIA6144 or Azospirillum brasilense Az39 cells in 2% alginate beads prepared by ionic gelation process, and then stored up to 12 months at 4 °C. Alginate matrix showed interaction with the immobilized bacteria (FTIR), allowed a constant release of cells, and improved their viability and capability to interact with Arachis hypogaea. Cell number into beads reached 107 CFU.bead-1; however, viability decreased from 4 months of storage for Az39, while it was maintained up to 12 months for SEMIA6144, showing a low metabolic activity measured by the MTT assay. Adhesion of SEMIA6144 and Az39 from new beads to peanut root was 11.5% and 16%, respectively, higher than non-immobilized bacteria. Peanut inoculation with 12 months storage SEMIA6144 beads significantly increased root length and biomass at 30 days of growth, and under restrictive water condition (RWC), nodulation and total plant N content increased compared with liquid inoculation. Our results demonstrate that immobilization of SEMIA6144 and Az39 in alginate matrix is a potential alternative to enhance peanut growth even under RWC. KEY POINTS: • Alginate encapsulation enhances viability of SEMIA6144 or Az39 under storage at 4 °C for 1 year. • Alginate beads 2% ensure the gradual release of the microorganisms. • Cells from beads stored for long periods present chemotaxis and adhesion to peanut root. • Peanut inoculation with 1-year-old SEMIA6144 beads improves nodulation and growth in RWC.


Assuntos
Azospirillum brasilense , Bradyrhizobium , Alginatos , Arachis , Sobrevivência Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA