Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(6): e16912, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37484239

RESUMO

Deep eutectic solvents (DESs) potential for the extraction of polyphenolic compounds (PC) from mango by-products (peel and seed) was evaluated. Ultrasound (US) and agitation were applied to evaluate the effects of solvent and extraction methodology. The extracts were characterized with antioxidant capacity and HPLC-DAD profile. A theoretical study was performed using density functional theory and the QTAIM approach. ß-alanine and choline chloride based DESs were effective to extract PC from peel and seed. Some DES increased PC extraction up to three times for peel (23.05 ± 1.22 mg/g DW) and up to five time for seeds (60.01 ± 1.40 mg/g DW). The PC profile varied with the solvent (DES vs EtOH/MeOH), procedure (US vs agitation) and material (peel or seed). Mangiferin extraction from peels was significantly increased with ß-alanine based DES (676.08 ± 20.34 µg/gDW). The strength of H-bonds had a determining effect on the viscosity of DESs. The solute-solvent solvation energy was suitable to estimate the strength of H-bond interactions between DES and target compounds. This study demonstrates the remarkable capacity of DESs to extract PC from mango by-products and provides insights into the factors controlling extraction properties.

2.
J Sci Food Agric ; 101(10): 4256-4265, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33421116

RESUMO

BACKGROUND: In recent years the use of high-pressure processing (HPP) of fruit products has steadily increased due to its antimicrobial effectiveness and the retention of nutritional and quality attributes compared to conventional thermal technologies. Edible coatings are already being used to enhance the quality of minimally processed fruits. Thus, apple cubes (AC) and alginate-vanillin-coated apple cubes (AVAC) were subjected to HPP (400 MPa/5 min/35 °C). The microbiological and physicochemical parameters were evaluated and the bioactive compounds were monitored before and after HPP of apple cubes. Also, an in vitro gastrointestinal digestion (GID) was conducted. RESULTS: HPP left L. monocytogenes counts below the detection limit (2 log UFC g-1 ), regardless of the presence of coating. For E. coli, HPP + active coating showed a synergism affording the greatest reduction (>5 log) for AVAC-HPP. Firmness was maintained in AVAC-HPP samples, while AC-HPP samples suffered reductions of 35%. Colour attributes were also better retained in AVAC-HPP samples. In general, HPP led to a decrease in phenolic compounds. Regarding the effects of GID, vanillin-based active coating exerted a protective effect on some phenolics. Thus, p-coumaroylquinic acid concentration was maintained for AVAC and AVAC-HPP during GID. Epigallocatechin, the compound with the highest concentration in apple cubes, increased for AVAC (106%) and AVAC-HPP (57%). Also, phloridzin concentration increased for AVAC-HPP (17%). At the end of GID, procyanidin B1 and epigallocatechin were the main phenolic compounds for all samples, AVAC showing the highest concentration. CONCLUSIONS: This work demonstrates that the combined application of HPP and active coatings on apple cubes could be used to obtain a safe and good-quality product. © 2021 Society of Chemical Industry.


Assuntos
Conservação de Alimentos/métodos , Conservantes de Alimentos/farmacologia , Frutas/microbiologia , Malus/química , Fenóis/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Conservação de Alimentos/instrumentação , Frutas/química , Malus/microbiologia , Valor Nutritivo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA