Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Sci Rep ; 14(1): 16721, 2024 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030304

RESUMO

Antigen-specific cytotoxic CD8 T cells are extremely effective in controlling tumor growth and have been the focus of immunotherapy approaches. We leverage in silico tools to investigate whether the occurrence of mutations in proteins previously described as immunogenic and highly expressed by glioblastoma multiforme (GBM), such as Epidermal Growth Factor Receptor (EGFR), Isocitrate Dehydrogenase 1 (IDH1), Phosphatase and Tensin homolog (PTEN) and Tumor Protein 53 (TP53), may be contributing to the differential presentation of immunogenic epitopes. We recovered Class I MHC binding information from wild-type and mutated proteins using the Immune Epitope Database (IEDB). After that, we built peptide-MHC (pMHC-I) models in HLA-arena, followed by hierarchical clustering analysis based on electrostatic surface features from each complex. We identified point mutations that are determinants for the presentation of a set of peptides from TP53 protein. We point to structural features in the pMHC-I complexes of wild-type and mutated peptides, which may play a role in the recognition of CD8 T cells. To further explore these features, we performed 100 ns molecular dynamics simulations for the peptide pairs (wt/mut) selected. In pursuit of novel therapeutic targets for GBM treatment, we selected peptides where our predictive results indicated that mutations would not disrupt epitope presentation, thereby maintaining a specific CD8 T cell immune response. These peptides hold potential for future GBM interventions, including peptide-based or mRNA vaccine development applications.


Assuntos
Apresentação de Antígeno , Linfócitos T CD8-Positivos , Glioblastoma , Isocitrato Desidrogenase , Proteína Supressora de Tumor p53 , Glioblastoma/imunologia , Glioblastoma/genética , Glioblastoma/terapia , Humanos , Linfócitos T CD8-Positivos/imunologia , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/imunologia , Isocitrato Desidrogenase/química , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/imunologia , Apresentação de Antígeno/imunologia , Mutação , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/imunologia , PTEN Fosfo-Hidrolase/química , Receptores ErbB/imunologia , Receptores ErbB/genética , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia
2.
Cells ; 11(16)2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-36010648

RESUMO

Clinical and experimental data indicate that severe acute respiratory syndrome coronavirus (SARS-CoV)-2 infection is associated with significant changes in the composition and function of intestinal microbiota. However, the relevance of these effects for SARS-CoV-2 pathophysiology is unknown. In this study, we analyzed the impact of microbiota depletion after antibiotic treatment on the clinical and immunological responses of K18-hACE2 mice to SARS-CoV-2 infection. Mice were treated with a combination of antibiotics (kanamycin, gentamicin, metronidazole, vancomycin, and colistin, Abx) for 3 days, and 24 h later, they were infected with SARS-CoV-2 B lineage. Here, we show that more than 80% of mice succumbed to infection by day 11 post-infection. Treatment with Abx had no impact on mortality. However, Abx-treated mice presented better clinical symptoms, with similar weight loss between infected-treated and non-treated groups. We observed no differences in lung and colon histopathological scores or lung, colon, heart, brain and kidney viral load between groups on day 5 of infection. Despite some minor differences in the expression of antiviral and inflammatory markers in the lungs and colon, no robust change was observed in Abx-treated mice. Together, these findings indicate that microbiota depletion has no impact on SARS-CoV-2 infection in mice.


Assuntos
Tratamento Farmacológico da COVID-19 , Microbiota , Enzima de Conversão de Angiotensina 2 , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Modelos Animais de Doenças , Melfalan , Camundongos , Camundongos Transgênicos , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2 , gama-Globulinas
3.
Methods Mol Biol ; 2511: 367-373, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35838975

RESUMO

The use of in vitro methods of infecting cell lines to test new treatments for SARS-CoV-2 does not always recapitulate the real context of the infection, and mouse models for SARS-CoV-2 infection are limited. Here we describe a novel ex vivo approach by collecting, isolating, and culturing nasal epithelial cells obtained from patients with COVID-19. This technique allows us to study immune responses and test new treatments directly on cells from patients naturally infected with SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Antivirais , Técnicas de Cultura de Células , Humanos , Imunidade , Camundongos
4.
Front Immunol ; 13: 867022, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35603159

RESUMO

Respiratory syncytial virus (RSV) is a seasonal pathogen responsible for the highest percentage of viral bronchiolitis in pediatric patients. There are currently no vaccine available and therapeutic methods to mitigate the severity of RSV bronchiolitis are limited. OM-85, an oral standardized bacterial lysate isolated from human respiratory strains and widely used to prevent recurrent infections and/or exacerbations in populations at risk, has been shown to be effective and safe in children and adults. Here, we demonstrate that airway administration of OM-85 in Balb/c mice prior to infection prevents RSV-induced disease, resulting in inhibition of viral replication associated with less perivascular and peribronchial inflammation in the lungs. These protective effects are dose and time-dependent with complete protection using 1mg dose of OM-85 only four times intranasally. Mechanistic insights using this topical route in the airways revealed increased alveolar macrophages, a selective set of tolerogenic DCs, Treg and Th1 expansion in the lung, even in the absence of infection, contributing to a better Th1/Th2 balance and preventing ILC2 recruitment in the airways and associated inflammatory sequelae. OM-85 preventive treatment also improved antiviral response by increasing IFNß and its responsive genes in the lung. In vitro, OM-85 protects against RSV infection in a type I interferon pathway. Our animal model data suggest that intranasal use of OM-85 should be considered as a potential prophylactic product to prevent RSV bronchiolitis once human studies confirm these findings.


Assuntos
Bronquiolite Viral , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Animais , Extratos Celulares , Criança , Humanos , Imunidade Inata , Linfócitos , Camundongos , Camundongos Endogâmicos BALB C
5.
Front Immunol ; 13: 889945, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35603203

RESUMO

This mini review describes the role of gut and lung microbiota during respiratory viral infection and discusses the implication of the microbiota composition on the immune responses generated by the vaccines designed to protect against these pathogens. This is a growing field and recent evidence supports that the composition and function of the microbiota can modulate the immune response of vaccination against respiratory viruses such as influenza and SARS-CoV-2. Recent studies have highlighted that molecules derived from the microbiome can have systemic effects, acting in distant organs. These molecules are recognized by the immune cells from the host and can trigger or modulate different responses, interfering with vaccination protection. Modulating the microbiota composition has been suggested as an approach to achieving more efficient protective immune responses. Studies in humans have reported associations between a better vaccine response and specific bacterial taxa. These associations vary among different vaccine strategies and are likely to be context-dependent. The use of prebiotics and probiotics in conjunction with vaccination demonstrated that bacterial components could act as adjuvants. Future microbiota-based interventions may potentially improve and optimize the responses of respiratory virus vaccines.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Vacinas contra Influenza , Microbiota , Bactérias , COVID-19/prevenção & controle , Humanos , SARS-CoV-2
7.
Adv Exp Med Biol ; 1327: 93-106, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34279831

RESUMO

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the etiological agent of COVID-19, emerged last year in China and quickly spread to millions of people around the world. This virus infects cells in different tissues and causes pulmonary (e.g., pneumonia and acute respiratory distress syndrome), neurological, cardiovascular, and intestinal manifestations, which can be the result of a direct viral effect or secondary to endothelial, thrombotic, or immunological alterations. In this chapter, we discuss recent studies which highlighted the relevance of the intestinal microbiota for other infectious respiratory diseases. We present the "altered microbiota" (dysbiotic) as a point of connection between conditions that are risk factors for the development of severe forms of COVID-19. In addition, we describe the findings of recent studies reporting alterations of microbiota composition in COVID-19 patients and speculate on how this may impact in development of the disease.


Assuntos
COVID-19 , Microbioma Gastrointestinal , China , Disbiose , Humanos , SARS-CoV-2
8.
Front Immunol ; 12: 657363, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054820

RESUMO

Introduction: Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, resulting in a range of clinical manifestations and outcomes. Laboratory and immunological alterations have been considered as potential markers of disease severity and clinical evolution. Type I interferons (IFN-I), mainly represented by IFN-α and ß, are a group of cytokines with an important function in antiviral responses and have played a complex role in COVID-19. Some studies have demonstrated that IFN-I levels and interferon response is elevated in mild cases, while other studies have noted this in severe cases. The involvement of IFN-I on the pathogenesis and outcomes of SARS-CoV-2 infection remains unclear. In this study, we summarize the available evidence of the association of plasma protein levels of type I IFN with the severity of COVID-19. Methods: The PRISMA checklist guided the reporting of the data. A systematic search of the MEDLINE (PubMed), EMBASE, and Web of Science databases was performed up to March of 2021, looking for articles that evaluated plasma protein levels of IFN-I in mild, severe, or critical COVID-19 patients. Comparative meta-analyses with random effects were performed to compare the standardized mean differences in plasma protein levels of IFN-I of mild versus severe and mild versus critical patients. Meta-regressions were performed to test the moderating role of age, sex, time that the IFN-I was measured, and limit of detection of the assay used in the difference between the means. Results: There was no significant difference in plasma levels of IFN-α when comparing between mild and severe patients (SMD = -0.236, 95% CI -0.645 to 0.173, p = 0.258, I2 = 82.11), nor when comparing between patients mild and critical (SMD = 0.203, 95% CI -0.363 to 0.770, p = 0.481, I2 = 64.06). However, there was a significant difference between healthy individuals and patients with mild disease (SMD = 0.447, 95% CI 0.085 to 0.810, p = 0.016, I2 = 62.89). Conclusions: Peripheral IFN-α cannot be used as a severity marker as it does not determine the clinical status presented by COVID-19 patients.


Assuntos
Biomarcadores/sangue , COVID-19/diagnóstico , Interferon Tipo I/sangue , SARS-CoV-2/fisiologia , Progressão da Doença , Humanos , Índice de Gravidade de Doença
9.
J Pediatr (Rio J) ; 97(5): 546-551, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33400919

RESUMO

OBJECTIVE: The aim of this study was to evaluate the association between possible functional interleukin-10 (IL-10) polymorphisms, IL-10 expression and regulatory T cells (Tregs) frequency, and/or asthma severity in a sample of children and adolescents. METHODS: This is a nested case-control genetic association study. The study sample consisted of children and adolescents aged 8-14 from public schools. Four polymorphisms of the IL-10 gene (rs1518111, rs3024490, rs3024496, rs3024491) were genotyped in asthmatic subjects and controls using real-time PCR. Tregs cells and IL-10 were analyzed in peripheral blood mononuclear cells by flow cytometry. The severity of asthma was defined according to the Global Initiative for Asthma (GINA) guideline. RESULTS: One hundred twenty-three asthmatic subjects and fifty-eight controls participated in the study. The single nucleotide polymorphism (SNP) rs3024491 (T allele) showed association with asthma severity, presenting a higher frequency in patients in the moderate asthma group. The T allele of variant rs3024491 also showed an association with reduced IL-10 levels (p=0.01) and with increased Tregs frequency (p=0.01). The other variants did not present consistent associations. CONCLUSIONS: Our results suggest that moderate asthma is associated with a higher frequency of the T allele in the SNP rs3024491. In addition, the variant rs3024491 (TT) was associated with a reduction in IL-10 production and an increased percentage of Tregs cells, suggesting possible mechanisms that influence asthma severity.


Assuntos
Asma , Interleucina-10 , Adolescente , Asma/genética , Criança , Fatores de Transcrição Forkhead , Humanos , Interleucina-10/genética , Subunidade alfa de Receptor de Interleucina-2 , Leucócitos Mononucleares , Polimorfismo de Nucleotídeo Único/genética
10.
Front Immunol ; 12: 812176, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095907

RESUMO

Although not being the first viral pandemic to affect humankind, we are now for the first time faced with a pandemic caused by a coronavirus. The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has been responsible for the COVID-19 pandemic, which caused more than 4.5 million deaths worldwide. Despite unprecedented efforts, with vaccines being developed in a record time, SARS-CoV-2 continues to spread worldwide with new variants arising in different countries. Such persistent spread is in part enabled by public resistance to vaccination in some countries, and limited access to vaccines in other countries. The limited vaccination coverage, the continued risk for resistant variants, and the existence of natural reservoirs for coronaviruses, highlight the importance of developing additional therapeutic strategies against SARS-CoV-2 and other coronaviruses. At the beginning of the pandemic it was suggested that countries with Bacillus Calmette-Guérin (BCG) vaccination programs could be associated with a reduced number and/or severity of COVID-19 cases. Preliminary studies have provided evidence for this relationship and further investigation is being conducted in ongoing clinical trials. The protection against SARS-CoV-2 induced by BCG vaccination may be mediated by cross-reactive T cell lymphocytes, which recognize peptides displayed by class I Human Leukocyte Antigens (HLA-I) on the surface of infected cells. In order to identify potential targets of T cell cross-reactivity, we implemented an in silico strategy combining sequence-based and structure-based methods to screen over 13,5 million possible cross-reactive peptide pairs from BCG and SARS-CoV-2. Our study produced (i) a list of immunogenic BCG-derived peptides that may prime T cell cross-reactivity against SARS-CoV-2, (ii) a large dataset of modeled peptide-HLA structures for the screened targets, and (iii) new computational methods for structure-based screenings that can be used by others in future studies. Our study expands the list of BCG peptides potentially involved in T cell cross-reactivity with SARS-CoV-2-derived peptides, and identifies multiple high-density "neighborhoods" of cross-reactive peptides which could be driving heterologous immunity induced by BCG vaccination, therefore providing insights for future vaccine development efforts.


Assuntos
Vacina BCG/imunologia , COVID-19/imunologia , Reações Cruzadas/imunologia , Peptídeos/imunologia , SARS-CoV-2/imunologia , Linfócitos T/imunologia , Vacinas Virais/imunologia , Humanos , Pandemias/prevenção & controle , Vacinação/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA