Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Front Pharmacol ; 15: 1406784, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38978979

RESUMO

The global prevalence of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) is increasing, now affecting 25%-30% of the population worldwide. MASLD, characterized by hepatic steatosis, results from an imbalance in lipid metabolism, leading to oxidative stress, lipoperoxidation, and inflammation. The activation of autophagy, particularly lipophagy, alleviates hepatic steatosis by regulating intracellular lipid levels. Lutein, a carotenoid with antioxidant and anti-inflammatory properties, protects against liver damage, and individuals who consume high amounts of lutein have a lower risk of developing MASLD. Evidence suggests that lutein could modulate autophagy-related signaling pathways, such as the transcription factor EB (TFEB). TFEB plays a crucial role in regulating lipid homeostasis by linking autophagy to energy metabolism at the transcriptional level, making TFEB a potential target against MASLD. STARD3, a transmembrane protein that binds and transports cholesterol and sphingosine from lysosomes to the endoplasmic reticulum and mitochondria, has been shown to transport and bind lutein with high affinity. This protein may play a crucial role in the uptake and transport of lutein in the liver, contributing to the decrease in hepatic steatosis and the regulation of oxidative stress and inflammation. This review summarizes current knowledge on the role of lutein in lipophagy, the pathways it is involved in, its relationship with STARD3, and its potential as a pharmacological strategy to treat hepatic steatosis.

3.
Front Immunol ; 13: 1028953, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466902

RESUMO

Inflammatory Bowel Disease (IBD) is characterized by a loss of intestinal barrier function caused by an aberrant interaction between the immune response and the gut microbiota. In IBD, imbalance in cholesterol homeostasis and mitochondrial bioenergetics have been identified as essential events for activating the inflammasome-mediated response. Mitochondrial alterations, such as reduced respiratory complex activities and reduced production of tricarboxylic acid (TCA) cycle intermediates (e.g., citric acid, fumarate, isocitric acid, malate, pyruvate, and succinate) have been described in in vitro and clinical studies. Under inflammatory conditions, mitochondrial architecture in intestinal epithelial cells is dysmorphic, with cristae destruction and high dynamin-related protein 1 (DRP1)-dependent fission. Likewise, these alterations in mitochondrial morphology and bioenergetics promote metabolic shifts towards glycolysis and down-regulation of antioxidant Nuclear erythroid 2-related factor 2 (Nrf2)/Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) signaling. Although the mechanisms underlying the mitochondrial dysfunction during mucosal inflammation are not fully understood at present, metabolic intermediates and cholesterol may act as signals activating the NLRP3 inflammasome in IBD. Notably, dietary phytochemicals exhibit protective effects against cholesterol imbalance and mitochondrial function alterations to maintain gastrointestinal mucosal renewal in vitro and in vivo conditions. Here, we discuss the role of cholesterol and mitochondrial metabolism in IBD, highlighting the therapeutic potential of dietary phytochemicals, restoring intestinal metabolism and function.


Assuntos
Inflamassomos , Doenças Inflamatórias Intestinais , Humanos , Mitocôndrias , Colesterol , Doença Crônica , Glicólise , Ácido Pirúvico
4.
Int J Mol Sci ; 23(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36012279

RESUMO

Adherent-invasive E. coli (AIEC) is a pathotype associated with the etiopathogenesis of Crohn's disease (CD), albeit with an as-yet unclear role. The main pathogenic mechanisms described for AIEC are adherence to epithelial cells, invasion of epithelial cells, and survival and replication within macrophages. A few virulence factors have been described as participating directly in these phenotypes, most of which have been evaluated only in AIEC reference strains. To date, no molecular markers have been identified that can differentiate AIEC from other E. coli pathotypes, so these strains are currently identified based on the phenotypic characterization of their pathogenic mechanisms. The identification of putative AIEC molecular markers could be beneficial not only from the diagnostic point of view but could also help in better understanding the determinants of AIEC pathogenicity. The objective of this study was to identify molecular markers that contribute to the screening of AIEC strains. For this, we characterized outer membrane protein (OMP) profiles in a group of AIEC strains and compared them with the commensal E. coli HS strain. Notably, we found a set of OMPs that were present in the AIEC strains but absent in the HS strain. Moreover, we developed a PCR assay and performed phylogenomic analyses to determine the frequency and distribution of the genes coding for these OMPs in a larger collection of AIEC and other E. coli strains. As result, it was found that three genes (chuA, eefC, and fitA) are widely distributed and significantly correlated with AIEC strains, whereas they are infrequent in commensal and diarrheagenic E. coli strains (DEC). Additional studies are needed to validate these markers in diverse strain collections from different geographical regions, as well as investigate their possible role in AIEC pathogenicity.


Assuntos
Proteínas da Membrana Bacteriana Externa , Proteínas de Escherichia coli , Escherichia coli , Aderência Bacteriana , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Biomarcadores/metabolismo , Escherichia coli/metabolismo , Infecções por Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mucosa Intestinal/metabolismo , Proteínas de Membrana/metabolismo
5.
Cells ; 11(12)2022 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-35741034

RESUMO

Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) and can be treated with glucocorticoids (GC), although some patients are unresponsive to this therapy. The transcription factor LRH-1/NR5A2 is critical to intestinal cortisol production (intestinal steroidogenesis), being reduced in UC patients. However, the relationship between LRH-1 expression and distribution with altered corticosteroid responses is unknown. To address this, we categorized UC patients by their steroid response. Here, we found that steroid-dependent and refractory patients presented reduced glucocorticoid receptor (GR)-mediated intestinal steroidogenesis compared to healthy individuals and responder patients, possibly related to increased colonic mucosa GR isoform beta (GRß) content and cytoplasmic LRH-1 levels in epithelial and lamina propria cells. Interestingly, an intestinal epithelium-specific GR-induced knockout (GRiKO) dextran sodium sulfate (DSS)-colitis mice model presented decreased epithelial LRH-1 expression, whilst it increased in the lamina propria compared to DSS-treated control mice. Mechanistically, GR directly induced NR5A2 gene expression in CCD841CoN cells and human colonic organoids. Furthermore, GR bound to two glucocorticoid-response elements within the NR5A2 promoter in dexamethasone-stimulated CCD841CoN cells. We conclude that GR contributes to intestinal steroidogenesis by inducing LRH-1 in epithelial cells, suggesting LRH-1 as a potential marker for glucocorticoid-impaired response in UC. However, further studies with a larger patient cohort will be necessary to confirm role of LRH-1 as a therapeutic biomarker.


Assuntos
Colite Ulcerativa , Animais , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Glucocorticoides/metabolismo , Glucocorticoides/farmacologia , Humanos , Mucosa Intestinal/metabolismo , Intestinos , Camundongos , Esteroides/metabolismo
6.
Microb Cell ; 8(9): 223-238, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34527721

RESUMO

Inflammatory bowel diseases (IBDs), which include ulcerative colitis (UC) and Crohn's disease (CD), cause chronic inflammation of the gut, affecting millions of people worldwide. IBDs have been frequently associated with an alteration of the gut microbiota, termed dysbiosis, which is generally characterized by an increase in abundance of Proteobacteria such as Escherichia coli, and a decrease in abundance of Firmicutes such as Faecalibacterium prausnitzii (an indicator of a healthy colonic microbiota). The mechanisms behind the development of IBDs and dysbiosis are incompletely understood. Using samples from colonic biopsies, we studied the mucosa-associated intestinal microbiota in Chilean and Spanish patients with IBD. In agreement with previous studies, microbiome comparison between IBD patients and non-IBD controls indicated that dysbiosis in these patients is characterized by an increase of pro-inflammatory bacteria (mostly Proteobacteria) and a decrease of commensal beneficial bacteria (mostly Firmicutes). Notably, bacteria typically residing on the mucosa of healthy individuals were mostly obligate anaerobes, whereas in the inflamed mucosa an increase of facultative anaerobe and aerobic bacteria was observed. We also identify potential co-occurring and mutually exclusive interactions between bacteria associated with the healthy and inflamed mucosa, which appear to be determined by the oxygen availability and the type of respiration. Finally, we identified a panel of bacterial biomarkers that allow the discrimination between eubiosis from dysbiosis with a high diagnostic performance (96% accurately), which could be used for the development of non-invasive diagnostic methods. Thus, this study is a step forward towards understanding the landscapes and alterations of mucosa-associated intestinal microbiota in patients with IBDs.

7.
Cells ; 10(3)2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809084

RESUMO

Colorectal cancer (CRC) is the second most frequent neoplasm in Chile and its mortality rate is rising in all ages. However, studies characterizing CRC according to the age of onset are still lacking. This study aimed to identify clinical, pathological, and molecular features of CRC in Chilean patients according to the age of diagnosis: early- (≤50 years; EOCRC), intermediate- (51-69 years; IOCRC), and late-onset (≥70 years; LOCRC). The study included 426 CRC patients from Clinica Las Condes, between 2007 and 2019. A chi-square test was applied to explore associations between age of onset and clinicopathological characteristics. Body Mass Index (BMI) differences according to age of diagnosis was evaluated through t-test. Overall (OS) and cancer-specific survival (CSS) were estimated by the Kaplan-Meier method. We found significant differences between the age of onset, and gender, BMI, family history of cancer, TNM Classification of Malignant Tumors stage, OS, and CSS. EOCRC category was characterized by a family history of cancer, left-sided tumors with a more advanced stage of the disease but better survival at 10 years, and lower microsatellite instability (MSI), with predominant germline mutations. IOCRC has shown clinical similarities with the EOCRC and molecular similarities to the LOCRC, which agrees with other reports.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Adulto , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Índice de Massa Corporal , Chile/epidemiologia , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/terapia , Metilação de DNA , Feminino , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Hereditariedade , Humanos , Masculino , Instabilidade de Microssatélites , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Fenótipo , Sistema de Registros , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Fatores Sexuais , Fatores de Tempo
8.
Front Immunol ; 12: 612826, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841394

RESUMO

Colorectal cancer (CRC) is one of the most common cancers worldwide. As with other cancers, CRC is a multifactorial disease due to the combined effect of genetic and environmental factors. Most cases are sporadic, but a small proportion is hereditary, estimated at around 5-10%. In both, the tumor interacts with heterogeneous cell populations, such as endothelial, stromal, and immune cells, secreting different signals (cytokines, chemokines or growth factors) to generate a favorable tumor microenvironment for cancer cell invasion and metastasis. There is ample evidence that inflammatory processes have a role in carcinogenesis and tumor progression in CCR. Different profiles of cell activation of the tumor microenvironment can promote pro or anti-tumor pathways; hence they are studied as a key target for the control of cancer progression. Additionally, the intestinal mucosa is in close contact with a microorganism community, including bacteria, bacteriophages, viruses, archaea, and fungi composing the gut microbiota. Aberrant composition of this microbiota, together with alteration in the diet-derived microbial metabolites content (such as butyrate and polyamines) and environmental compounds has been related to CRC. Some bacteria, such as pks+ Escherichia coli or Fusobacterium nucleatum, are involved in colorectal carcinogenesis through different pathomechanisms including the induction of genetic mutations in epithelial cells and modulation of tumor microenvironment. Epithelial and immune cells from intestinal mucosa have Pattern-recognition receptors and G-protein coupled receptors (receptor of butyrate), suggesting that their activation can be regulated by intestinal microbiota and metabolites. In this review, we discuss how dynamics in the gut microbiota, their metabolites, and tumor microenvironment interplays in sporadic and hereditary CRC, modulating tumor progression.


Assuntos
Neoplasias Colorretais/etiologia , Neoplasias Colorretais/metabolismo , Suscetibilidade a Doenças , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Microbiota , Microambiente Tumoral , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Neoplasias Colorretais/patologia , Dieta , Metabolismo Energético , Microbioma Gastrointestinal , Humanos
9.
J Clin Med ; 9(6)2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32549215

RESUMO

Lynch syndrome (LS) is associated with the highest risk of colorectal (CRC) and several extracolonic cancers. In our effort to characterize LS families from Latin America, this study aimed to describe the spectrum of neoplasms and cancer risk by gender, age and gene, and survival in 34 Chilean LS families. Of them, 59% harbored path_MLH1, 23% path_MSH2, 12% path_PMS2 and 6% path_EPCAM variants. A total of 866 individuals at risk were identified, of which 213 (24.6%) developed 308 neoplasms. In males, CRC was the most common cancer (72.6%), while females showed a greater frequency of extracolonic cancers (58.4%), including uterus and breast (p < 0.0001). The cumulative incidence of extracolonic cancers was higher in females than males (p = 0.001). Path_MLH1 variants are significantly more associated with the development of CRC than extracolonic tumors (59.5% vs. 40.5%) when compared to path_MSH2 (47.5% vs. 52.5%) variants (p = 0.05018). The cumulative incidence of CRC was higher in path_MLH1/path_MSH2 carriers compared to path_PMS2 carriers (p = 0.03). In addition, path_MSH2 carriers showed higher risk of extracolonic tumors (p = 0.002). In conclusion, this study provides a snapshot of the LS profile from Chile and the current LS-associated diagnostic practice and output in Chile. Categorizing cancer risks associated with each population is relevant in the genetic counselling of LS patients.

10.
Front Immunol ; 11: 901, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32499779

RESUMO

Cancer is a significant medical issue, being one of the main causes of mortality around the world. The therapies for this pathology depend on the stage in which the cancer is found, but it is usually diagnosed at an advanced stage in which the treatment is chemotherapy. Platinum drugs are among the most commonly used in therapy, unfortunately, one of the main obstacles to this treatment is the development of chemoresistance, which is the ability of cancer cells to evade the effects of drugs. Although some molecular mechanisms involved in resistance to platinum drugs are described, elucidation is still required of others. Secretion of inflammatory mediators such as cytokines and chemokines, by tumor microenvironment components or tumor cells, show direct influence on proliferation, metastasis and progression of cancer and are related to chemoresistance and poor prognosis. In this review, the general mechanisms associated with resistance to platinum drugs, inflammation on cancer development and chemoresistance in various types of cancer will be approached with special emphasis on the current history of CC chemokines subfamily-mediated chemoresistance.


Assuntos
Quimiocinas CC/imunologia , Resistencia a Medicamentos Antineoplásicos/imunologia , Neoplasias/tratamento farmacológico , Platina/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Proliferação de Células , Quimiocinas CC/classificação , Humanos , Inflamação/genética , Neoplasias/imunologia , Microambiente Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA