Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Psychopharmacology (Berl) ; 239(9): 2713-2734, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35904579

RESUMO

RATIONALE: Autism spectrum disorder (ASD) is defined as a group of neurodevelopmental disorders whose symptoms include impaired communication and social interaction, restricted and repetitive patterns of behavior, and varying levels of intellectual disability. ASD is observed in early childhood and is one of the most severe chronic childhood disorders in prevalence, morbidity, and impact on society. It is usually accompanied by attention deficit hyperactivity disorder, anxiety, depression, sleep disorders, and epilepsy. The treatment of ASD has low efficacy, possibly because it has a heterogeneous nature, and its neurobiological basis is not clearly understood. Drugs such as risperidone and aripiprazole are the only two drugs available that are recognized by the Food and Drug Administration, primarily for treating the behavioral symptoms of this disorder. These drugs have limited efficacy and a high potential for inducing undesirable effects, compromising treatment adherence. Therefore, there is great interest in exploring the endocannabinoid system, which modulates the activity of other neurotransmitters, has actions in social behavior and seems to be altered in patients with ASD. Thus, cannabidiol (CBD) emerges as a possible strategy for treating ASD symptoms since it has relevant pharmacological actions on the endocannabinoid system and shows promising results in studies related to disorders in the central nervous system. OBJECTIVES: Review the preclinical and clinical data supporting CBD's potential as a treatment for the symptoms and comorbidities associated with ASD, as well as discuss and provide information with the purpose of not trivializing the use of this drug.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Canabidiol , Aripiprazol/uso terapêutico , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Transtorno do Espectro Autista/tratamento farmacológico , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Pré-Escolar , Endocanabinoides , Humanos
2.
Behav Brain Res ; 428: 113832, 2022 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-35259414

RESUMO

Dysregulation of GABAergic neurotransmission has long been implicated in several psychiatric disorders, including schizophrenia, depression, and anxiety disorders. Alpha 5 subunit-containing GABAA receptors (α5-GABAAR), which are expressed mainly by pyramidal neurons in the hippocampus, have been proposed as a potential target to treat these psychiatric disorders. Here, we evaluated the effects produced by GL-II-73 and SH-053-2'F-R-CH3 (1, 5, and 10 mg/kg), two positive allosteric modulators of α5-GABAAR in behavioral tests sensitive to drugs with anxiolytic, antidepressant, and antipsychotic properties in male and female C57BL/6 mice. In both males and females, GL-II-73 produced an anxiolytic-like effect in the elevated plus-maze (EPM) and novelty-suppressed feeding and a rapid and sustained antidepressant-like effect in the forced swim test. GL-II-73 also induced antipsychotic-like effects in males indicated by attenuating MK-801-induced hyperlocomotion and prepulse inhibition (PPI) disruption. However, GL-II-73 per se increased locomotor activity and impaired fear memory extinction in males and females and PPI in males. On the other hand, SH-053-2'F-R-CH3 induced anxiolytic-like effects in the EPM and facilitated fear memory extinction in males. Contrary to GL-II-73, SH-053-2'F-R-CH3 attenuated MK-801-induced hyperlocomotion and PPI disruption in females but not in males. Neither of these drugs induced rewarding effects or impaired motor coordination. These findings suggest that GL-II-73 and SH-053-2'F-R-CH3 cause distinct sex-dependent behavioral responses and support continued preclinical research on the potential of positive allosteric modulators of α5-GABAAR for the treatment of psychiatric disorders.


Assuntos
Ansiolíticos , Antipsicóticos , Animais , Ansiolíticos/farmacologia , Benzodiazepinas/farmacologia , Maleato de Dizocilpina , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de GABA-A , Ácido gama-Aminobutírico
3.
Mol Neurobiol ; 59(2): 1140-1150, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34855116

RESUMO

The existence of few biomarkers and the lack of a better understanding of the pathophysiology of levodopa-induced dyskinesia (LID) in Parkinson's disease (PD) require new approaches, as the metabolomic analysis, for discoveries. We aimed to identify a metabolic profile associated with LID in patients with PD in an original cohort and to confirm the results in an external cohort (BioFIND). In the original cohort, plasma and CSF were collected from 20 healthy controls, 23 patients with PD without LID, and 24 patients with PD with LID. LC-MS/MS and metabolomics data analysis were used to perform untargeted metabolomics. Untargeted metabolomics data from the BioFIND cohort were analyzed. We identified a metabolic profile associated with LID in PD, composed of multiple metabolic pathways. In particular, the dysregulation of the glycosphingolipid metabolic pathway was more related to LID and was strongly associated with the severity of dyskinetic movements. Furthermore, bile acid biosynthesis metabolites simultaneously found in plasma and CSF have distinguished patients with LID from other participants. Data from the BioFIND cohort confirmed dysregulation in plasma metabolites from the bile acid biosynthesis pathway. There is a distinct metabolic profile associated with LID in PD, both in plasma and CSF, which may be associated with the dysregulation of lipid metabolism and neuroinflammation.


Assuntos
Discinesia Induzida por Medicamentos , Doença de Parkinson , Antiparkinsonianos/efeitos adversos , Cromatografia Líquida , Discinesia Induzida por Medicamentos/metabolismo , Humanos , Levodopa/efeitos adversos , Metaboloma , Doenças Neuroinflamatórias , Doença de Parkinson/tratamento farmacológico , Espectrometria de Massas em Tandem
4.
J Neural Transm (Vienna) ; 129(1): 55-63, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34940921

RESUMO

Levodopa-induced dyskinesia (LID) is a common complication of Parkinson's disease (PD) therapy. Nitric oxide in the central nervous system may have a role in its pathophysiology. The present work investigates plasma and CSF levels of nitric oxide metabolites nitrite and nitrate in patients with PD, LID, and healthy control. We measured plasma and CSF nitrite and nitrate levels in patients with PD with and without LID and in healthy controls. The levels of plasma and CSF nitrite and nitrate were measured by ozone-based chemiluminescence. Sixty-seven participants were enrolled. CSF nitrite levels in patients with PD and LID were higher than in patients with PD without LID and healthy controls. CSF/plasma ratio of nitrite was higher in patients with PD and LID than in patients with PD without LID. The CSF/plasma ratio of nitrite in patients with PD and LID was higher than 1, indicating an intrathecal production of NO in patients with this motor complication. There was an increase in nitrate levels of CSF and CSF/plasma ratio of nitrate in patients with PD and LID compared to the healthy controls. Sex, age at evaluation, disease duration, and levodopa equivalent daily doses, as well as processing and storage time, did not critically influence these results. The present study demonstrated an increase in nitrite and nitrate levels in the central nervous system of patients with PD and LID. This finding strengthens the role of NO on LID pathophysiology.


Assuntos
Discinesias , Doença de Parkinson , Antiparkinsonianos/efeitos adversos , Humanos , Levodopa/efeitos adversos , Óxido Nítrico
5.
Neurotox Res ; 39(3): 860-871, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33616872

RESUMO

Although monoaminergic-based antidepressant drugs are largely used to treat major depressive disorder (MDD), their mechanisms are still incompletely understood. Intracellular Ca2+ (iCa2+) and Calmodulin 1(CaM-1) homeostasis have been proposed to participate in the therapeutic effects of these compounds. We investigated whether intra-hippocampal inhibition of CaM-1 would modulate the behavioral responses to chronic treatment with imipramine (IMI) or 7-nitroindazole (7-NI), a selective inhibitor of the neuronal nitric oxide synthase 1 (NOS1) enzyme that shows antidepressant-like effects. We also investigated the interactions of IMI and CaM-1 on transient astrocyte iCa2+ evoked by glutamate stimuli. Intra-hippocampal microinjection of the lentiviral delivered (LV) short hairpin iRNA-driven against the CaM-1 mRNA (LV-shRNA-CaM-1) or the CaM-1 inhibitor N-(6-aminohexyl)-5-chloro-1-naphthalene sulphonamide (W-7) blocked the antidepressant-like effect of chronic treatment with IMI or 7-NI. The shRNA also inhibited the mRNA expression of the tropomyosin receptor kinase B (TrkB) in the microinjection region. The iCa2+ in ex vivo hippocampus slices stained with fluorescent Ca2+indicator Oregon Green 488 BAPTA-1 revealed that IMI increased the intensity and duration of iCa2+ oscillation and reduced the number of events evoked by glutamate stimuli, evaluated by using CCD imaging and the % ΔF/Fo parameters. The pre-treatment with W-7 fully antagonized this effect. The present results indicate that the behavioral benefits of chronic antidepressant treatment might be associated with astrocyte intracellular Ca2+dynamics and TrkB mRNA expression in the hippocampus.


Assuntos
Antidepressivos/farmacologia , Astrócitos/metabolismo , Sinalização do Cálcio/fisiologia , Depressão/metabolismo , Hipocampo/metabolismo , Receptor trkB/biossíntese , Animais , Astrócitos/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Depressão/tratamento farmacológico , Depressão/psicologia , Células HEK293 , Hipocampo/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar , Resultado do Tratamento
6.
Br J Pharmacol ; 176(10): 1541-1551, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30101419

RESUMO

BACKGROUND AND PURPOSE: The endocannabinoids anandamide and 2-arachidonoylglycerol (2-AG) bind to CB1 and CB2 cannabinoid receptors in the brain and modulate the mesolimbic dopaminergic pathway. This neurocircuitry is engaged by psychostimulant drugs, including cocaine. Although CB1 receptor antagonism and CB2 receptor activation are known to inhibit certain effects of cocaine, they have been investigated separately. Here, we tested the hypothesis that there is a reciprocal interaction between CB1 receptor blockade and CB2 receptor activation in modulating behavioural responses to cocaine. EXPERIMENTAL APPROACH: Male Swiss mice received i.p. injections of cannabinoid-related drugs followed by cocaine, and were then tested for cocaine-induced hyperlocomotion, c-Fos expression in the nucleus accumbens and conditioned place preference. Levels of endocannabinoids after cocaine injections were also analysed. KEY RESULTS: The CB1 receptor antagonist, rimonabant, and the CB2 receptor agonist, JWH133, prevented cocaine-induced hyperlocomotion. The same results were obtained by combining sub-effective doses of both compounds. The CB2 receptor antagonist, AM630, reversed the inhibitory effects of rimonabant in cocaine-induced hyperlocomotion and c-Fos expression in the nucleus accumbens. Selective inhibitors of anandamide and 2-AG hydrolysis (URB597 and JZL184, respectively) failed to modify this response. However, JZL184 prevented cocaine-induced hyperlocomotion when given after a sub-effective dose of rimonabant. Cocaine did not change brain endocannabinoid levels. Finally, CB2 receptor blockade reversed the inhibitory effect of rimonabant in the acquisition of cocaine-induced conditioned place preference. CONCLUSION AND IMPLICATIONS: The present data support the hypothesis that CB1 and CB2 receptors work in concert with opposing functions to modulate certain addiction-related effects of cocaine. LINKED ARTICLES: This article is part of a themed section on 8th European Workshop on Cannabinoid Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.10/issuetoc.


Assuntos
Ácidos Araquidônicos/metabolismo , Cocaína/farmacologia , Endocanabinoides/metabolismo , Glicerídeos/metabolismo , Alcamidas Poli-Insaturadas/metabolismo , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/agonistas , Recompensa , Animais , Comportamento Animal/efeitos dos fármacos , Agonistas de Receptores de Canabinoides/farmacologia , Antagonistas de Receptores de Canabinoides/farmacologia , Condicionamento Clássico , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Ligação Proteica , Proteínas Proto-Oncogênicas c-fos/metabolismo
7.
Naunyn Schmiedebergs Arch Pharmacol ; 391(7): 761-768, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29691608

RESUMO

The monoamine stabilizer (3S)-3-[3-(methenesulfonyl)phenyl]-1-propylpiperidine hidrochloride [(-)-OSU6162] is a promising compound for the treatment of neurological and psychiatric disorders, such as schizophrenia. Here, we tested the hypothesis that (-)-OSU6162 prevents hyperlocomotion and sensorimotor deficits in prepulse inhibition of the startle response (PPI) induced by psychomimetic drugs. Male Swiss mice received injections of (-)-OSU6162 (1, 3, 10, or 30 mg/kg), and their motor responses were investigated in the open field and in the catalepsy tests, which predicts liability to induce sedation and extrapyramidal side effects, respectively. Next, in independent experiments, this compound was evaluated for its efficacy to prevent hyperlocomotion induced by cocaine (10 mg/kg; dopamine transporter inhibitor) or ketamine (60 mg/kg; glutamate NMDA channel blocker) in the open field. Finally, we tested if (-)-OSU6162 prevents PPI disruption induced by MK-801 (0.5 mg/kg; glutamate NMDA channel blocker). (-)-OSU6162 induced neither locomotion impairment nor catalepsy. This compound prevented cocaine-induced hyperlocomotion at the doses of 10 and 30 mg/kg and ketamine-induced hyperlocomotion at the doses of 1 and 3 mg/kg. In the sensorimotor test, (-)-OSU6162 failed to reverse MK-801-induced PPI deficits. The dopamine stabilizer (-)-OSU6162 prevents the hyperactivity induced by dopaminergic and anti-glutamatergic drugs at doses that preserve motor functions, although it failed in the PPI test. Its therapeutic potential for specific symptoms of schizophrenia warrants further investigation in both preclinical and clinical studies.


Assuntos
Antipsicóticos/farmacologia , Piperidinas/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Cocaína/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ketamina/farmacologia , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Reflexo de Sobressalto/efeitos dos fármacos , Esquizofrenia/tratamento farmacológico
8.
Nutr Neurosci ; 21(5): 341-351, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28221817

RESUMO

OBJECTIVE: Parkinson's disease (PD) is characterized by deterioration of the nigrostriatal system and associated with chronic neuroinflammation. Glial activation has been associated with regulating the survival of dopaminergic neurons and is thought to contribute to PD through the release of proinflammatory and neurotoxic factors, such as reactive nitric oxide (NO) that triggers or exacerbates neurodegeneration in PD. Polyunsaturated fatty acids (PUFAs) exert protective effects, including antiinflammatory, antiapoptotic, and antioxidant activity, and may be promising for delaying or preventing PD by attenuating neuroinflammation and preserving dopaminergic neurons. The present study investigated the effects of fish oil supplementation that was rich in PUFAs on dopaminergic neuron loss, the density of inducible nitric oxide synthase (iNOS)-immunoreactive cells, and microglia and astrocyte reactivity in the substantia nigra pars compacta (SNpc) and striatal dopaminergic fibers. METHODS: The animals were supplemented with fish oil for 50 days and subjected to unilateral intrastriatal 6-hydroxydopamine (6-OHDA)-induced lesions as a model of PD. RESULTS: Fish oil mitigated the loss of SNpc neurons and nerve terminals in the striatum that was caused by 6-OHDA. This protective effect was associated with reductions of the density of iNOS-immunoreactive cells and microglia and astrocyte reactivity. DISCUSSION: These results suggest that the antioxidant and antiinflammatory properties of fish oil supplementation are closely related to a decrease in dopaminergic damage that is caused by the 6-OHDA model of PD.


Assuntos
Ácidos Graxos Ômega-3/farmacologia , Fármacos Neuroprotetores/farmacologia , Óxido Nítrico Sintase Tipo II/metabolismo , Doença de Parkinson/tratamento farmacológico , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Dopamina , Neurônios Dopaminérgicos/efeitos dos fármacos , Óleos de Peixe/farmacologia , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Degeneração Neural/tratamento farmacológico , Degeneração Neural/etiologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Oxidopamina , Doença de Parkinson/etiologia , Ratos , Ratos Wistar
9.
Physiol Rep ; 5(1)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28087816

RESUMO

The knowledge on real-time neurophysiological effects of acetazolamide is still far behind the wide clinical use of this drug. Acetazolamide - a carbonic anhydrase inhibitor - has been shown to affect the neuromuscular transmission, implying a pH-mediated influence on the central synaptic transmission. To start filling such a gap, we chose a central substrate: hippocampal-prefrontal cortical projections; and a synaptic phenomenon: paired-pulse facilitation (a form of synaptic plasticity) to probe this drug's effects on interareal brain communication in chronically implanted rats. We observed that systemic acetazolamide potentiates the hippocampal-prefrontal paired-pulse facilitation. In addition to this field electrophysiology data, we found that acetazolamide exerts a net inhibitory effect on prefrontal cortical single-unit firing. We propose that systemic acetazolamide reduces the basal neuronal activity of the prefrontal cortex, whereas increasing the afferent drive it receives from the hippocampus. In addition to being relevant to the clinical and side effects of acetazolamide, these results suggest that exogenous pH regulation can have diverse impacts on afferent signaling across the neocortex.


Assuntos
Acetazolamida/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Neurônios Aferentes/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Acetazolamida/efeitos adversos , Acetazolamida/sangue , Animais , Inibidores da Anidrase Carbônica/efeitos adversos , Inibidores da Anidrase Carbônica/sangue , Anidrases Carbônicas/fisiologia , Estimulação Elétrica , Hipocampo/efeitos dos fármacos , Hipocampo/enzimologia , Hipocampo/fisiologia , Masculino , Plasticidade Neuronal/efeitos dos fármacos , Córtex Pré-Frontal/fisiologia , Ratos , Ratos Wistar , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
10.
Psychopharmacology (Berl) ; 231(4): 663-72, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24101156

RESUMO

RATIONALE: Nitric oxide (NO) modulates the dopamine uptake and release processes and appears to be implicated in dopamine-related pathologies, such as schizophrenia. However, it is unclear whether there is excess or deficient NO synthesis in schizophrenia pathophysiology. Analyses of the intracellular pathways downstream of NO system activation have identified the cyclic nucleotide cyclic guanosine monophosphate (cGMP) as a possible target for drug development. Defects in the sensorimotor gating of the neural mechanism underlying the integration and processing of sensory information have been detected across species through prepulse inhibition (PPI). OBJECTIVES: The aim of this study was to investigate the effects of NO/cGMP increase on sensorimotor gating modulation during dopamine hyperfunction. METHODS: Mice were treated with NO donors and subjected to the PPI test. Treatment with the NO donor sodium nitroprusside was preceded by pretreatment with a soluble guanylate cyclase (sGC) inhibitor. Additionally, the mice were treated with NO donors and phosphodiesterases inhibitors prior to amphetamine treatment. RESULTS: Pretreatment with the NO donors enhanced the PPI response and attenuated the amphetamine-disruptive effects on the PPI. The sGC inhibitor did not modify the sodium nitroprusside effects. Additionally, the cGMP increase induced by a specific phosphodiesterase inhibitor did not modify the amphetamine-disruptive effect. CONCLUSIONS: This study provides the first demonstration that an increase in NO can improve the PPI response and block the amphetamine-disruptive effects on the PPI response. Our data are consistent with recent clinical results. However, these effects do not appear to be related to an increase in cGMP levels, and further investigation is thus required.


Assuntos
GMP Cíclico/metabolismo , Inibição Psicológica , Óxido Nítrico/metabolismo , Reflexo de Sobressalto/fisiologia , Filtro Sensorial/fisiologia , Estimulação Acústica , Anfetamina/farmacologia , Animais , AMP Cíclico/metabolismo , Dopaminérgicos/farmacologia , Relação Dose-Resposta a Droga , Guanilato Ciclase/antagonistas & inibidores , Guanilato Ciclase/metabolismo , Masculino , Camundongos , Testes Neuropsicológicos , Doadores de Óxido Nítrico/farmacologia , Nitroprussiato/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Purinonas/farmacologia , Reflexo de Sobressalto/efeitos dos fármacos , Filtro Sensorial/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA