Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Animals (Basel) ; 14(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473072

RESUMO

The vulnerable status of the Amazon manatee, Trichechus inunguis, indicates the need to seek measures to guarantee its conservation. In this context, the cultivation of cells in vitro is a strategy that should at least guarantee the preservation of their genetic material. Thus, we established for the first time a primary culture of Amazonian manatee fibroblasts (TINsf) from a skin biopsy of a young male. Karyotypic analysis of the 3rd, 7th, and 12th passages confirmed the taxonomic identity of the species T. inunguis (2n = 56/NF = 92) and indicated that this culture presents genomic stability. Gene and protein expression of vimentin at the 13th passage show the predominant presence of fibroblasts in TINsf. To test the cell line's responsiveness to materials and demonstrate a possible application of this culture, it was exposed to andiroba seed oil (ASO), and its viability and proliferative capacity were evaluated. ASO demonstrated toxic effects at the highest concentrations and longest exposure times tested, reproducing results observed in human cultures, indicating the applicability of TINsf in toxicological and biotechnological studies. After cryopreservation, the TINsf line maintained its proliferative potential, indicating the establishment of a new culture available for future studies.

2.
Cancer Genomics Proteomics ; 20(5): 487-499, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37643780

RESUMO

BACKGROUND/AIM: Pancreatic cancer (PC) has one of the highest mortality rates, with an overall five-year survival rate of only 7%. When diagnosed, PC is limited to the pancreas in only 20% of patients, whereas in 50% it has already metastasized. This is due to its late diagnosis, which makes the treatments used, such as radiotherapy, difficult, and reduces survival rates. Therefore, the importance of this study in detecting genes that may become possible biomarkers for this type of tumor, especially regarding the human secretome, is highlighted. These genes participate in pathways that are responsible for tumor migration and resistance to therapies, along with other important factors. MATERIALS AND METHODS: To achieve these goals, the following online tools and platforms have been expanded to discover and validate these biomarkers: The Human Protein Atlas database, the Xena Browser platform, Gene Expression Omnibus, the EnrichR platform and the Kaplan-Meier Plotter platform. RESULTS: Our study adopted a methodology that allows the identification of potential biomarkers related to the effectiveness of radiotherapy in PC. Inflammatory pathways were predominantly enriched, related to the regulation of biological processes, primarily in cytokine-derived proteins, which are responsible for tumor progression and other processes that contribute to the development of the disease. CONCLUSION: Radiotherapy treatment demonstrated greater efficacy when used in conjunction with other forms of therapy since it decreased the expression of essential genes involved in several inflammatory pathways linked to tumor progression.


Assuntos
Biomarcadores Tumorais , Neoplasias Pancreáticas , Humanos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Prognóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/radioterapia , Neoplasias Pancreáticas/metabolismo , Regulação Neoplásica da Expressão Gênica , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Neoplasias Pancreáticas
3.
Pathol Res Pract ; 248: 154637, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37356221

RESUMO

BACKGROUND: Ovarian cancer is a highly aggressive disease that is frequently diagnosed in advanced stages. Melatonin, with its numerous antitumor properties, holds great promise in cancer treatment. Herein, we investigated the effects of melatonin on apoptosis, cell migration, and kinase levels in human ovarian carcinoma SKOV-3 cells and determined whether these effects are mediated by the activation of the MT1 receptor. METHODS: SKOV-3 cells were exposed to different concentrations of melatonin based on the presence of MT1 receptor, and we also performed specific silencing of the melatonin receptor gene MTNR1A. RESULTS: Our findings revealed that melatonin reduced cell viability as shown by the MTT assay, and flow cytometry analysis showed increased rates of apoptosis and necrosis in all melatonin-treated cells. Melatonin significantly decreased the migratory and invasive capacities of the cells. Propidium iodide labeling indicated that melatonin induced cell cycle arrest by reducing DNA content in the S and G2/M phases in SKOV-3 cells. Additionally, the levels of AKT, ERK1/2, JNK, CREB, p70S6K, STAT3/5, and p38 MAP kinase involved in cell survival, proliferation, motility, and stress responses were depressed by melatonin and further reduced after MT1 knockdown. These molecules were found to be associated with lower overall survival in ovarian cancer patients. CONCLUSIONS: Melatonin had obvious oncostatic actions on ovarian cancer cells, and MT1 receptor knockdown intensified its antitumor effect. The inhibition of the MT1 receptor resulted in a substantial reduction in the migratory and invasive capacities of the cells, suggesting its potential as a therapeutic target for the treatment of ovarian cancer.

4.
Oncol Lett ; 25(2): 86, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36760518

RESUMO

Bacteriophages effectively counteract diverse bacterial infections, and their ability to treat most types of cancer has been explored using phage engineering or phage-virus hybrid platforms. In the present study, it was demonstrated that the bacteriophage MS2 can affect the expression of genes associated with the proliferation and survival of LNCaP prostate epithelial cells. LNCaP cells were exposed to bacteriophage MS2 at a concentration of 1×107 plaque forming units/ml for 24-48 h. After exposure, various cellular parameters, including cell viability, morphology, and changes in gene expression, were examined. MS2 affected cell viability adversely, reducing viability by 25% in the first 4 h of treatment; however, cell viability recovered within 24-48 h. Similarly, the AKT, androgen receptor, integrin α5, integrin ß1, MAPK1, MAPK3, STAT3, and peroxisome proliferator-activated receptor-γ coactivator 1α genes, which are involved in various normal cellular processes and tumor progression, were significantly upregulated, whereas the expression levels of HSP90, ITGB5, ITGB3, HSP27, ITGAV, and PI3K genes were unchanged. Therefore, based on viability and gene expression changes, bacteriophage MS2 severely impaired LNCaP cells by reducing anchorage-dependent survival and androgen signaling. A caveolin-mediated endocytosis mechanism for MS2-mediated signaling in prostate cancer cells was proposed based on reports involving bacteriophages T4, M13, and MS2, and their interactions with LNCaP and PC3 cell lines.

5.
Front Vet Sci ; 9: 879997, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898539

RESUMO

Prostate cancer (PCa) is a significant cause of cancer-related deaths among men and companion animals, such as dogs. However, despite its high mortality and incidence rates, the molecular mechanisms underlying this disease remain to be fully elucidated. Among the many factors involved in prostate carcinogenesis, the extracellular matrix (ECM) plays a crucial role. This ECM in the prostate is composed mainly of collagen fibers, reticular fibers, elastic fibers, proteoglycans and glycoproteins, such as fibronectin. Fibronectin is a glycoprotein whose dysregulation has been implicated in the development of multiple types of cancer, and it has been associated with cell migration, invasion, and metastasis. Furthermore, our research group has previously shown that fibronectin induces transcriptional changes by modulating the expression of protein coding genes in LNCaP cells. However, potential changes at the post-transcriptional level are still not well understood. This study investigated the impact of exposure to fibronectin on the expression of a key class of regulatory RNAs, the microRNAs (miRNAs), in prostate cancer cell lines LNCaP and PC-3. Five mammalian miRNAs (miR-21, miR-29b, miR-125b, miR-221, and miR-222) were differentially expressed after fibronectin exposure in prostate cell lines. The expression profile of hundreds of mRNAs predicted to be targeted by these miRNAs was analyzed using publicly available RNA-Sequencing data (GSE64025, GSE68645, GSE29155). Also, protein-protein interaction networks and enrichment analysis were performed to gain insights into miRNA biological functions. Altogether, these functional analyzes revealed that fibronectin exposure impacts the expression of miRNAs potentially involved in PCa causing changes in critical signaling pathways such as PI3K-AKT, and response to cell division, death, proliferation, and migration. The relationship here demonstrated between fibronectin exposure and altered miRNA expression improves the comprehension of PCa in both men and other animals, such as dogs, which naturally develop prostate cancer.

6.
Environ Toxicol ; 37(9): 2314-2323, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35661558

RESUMO

The possibility of chemical contamination is an important issue to consider when designing a cell therapy strategy. Both bisphenol A (BPA) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) are among the most environmentally relevant endocrine disrupting chemicals (EDCs, compounds with a high affinity for adipose tissue) recently studied. Adipose-derived stem cells (ASCs) are mesenchymal stromal cells (MSCs) obtained from adipose tissue widely used in regenerative medicine to prevent and treat diseases in several tissues and organs. Although the experimental use of tissue-engineered constructs requires careful analysis for approval and implantation, there has been a recent increase in the number of approved clinical trials for this promising strategy. This study aimed to evaluate cell viability, apoptosis, DNA damage, and the adipogenic or osteogenic differentiation potential of rat adipose-derived stem cells (rASCs) exposed to previously established non-cytotoxic doses of BPA and TCDD in vitro. Results demonstrated that 10 µM of BPA and 10 nM of TCDD were able to significantly reduce cell viability, while all exposure levels resulted in DNA damage, although did not increase the apoptosis rate. According to the analysis of adipogenic differentiation, 1 µM of BPA induced the significant formation of oil droplets, suggesting an increased adipocyte differentiation, while both 10 µM of BPA and 10 nM of TCDD decreased adipocyte differentiation. Osteogenic differentiation did not differ among the treatments. As such, BPA and TCDD in the concentrations tested can modify important processes in rASCs such as cell viability, adipogenic differentiation, and DNA damage. Together, these findings prove that EDCs play an important role as contaminants, putatively interfering in cell differentiation and thus impairing the therapeutic use of ASCs.


Assuntos
Dibenzodioxinas Policloradas , Adipócitos , Tecido Adiposo , Animais , Compostos Benzidrílicos , Diferenciação Celular , Osteogênese , Fenóis , Dibenzodioxinas Policloradas/toxicidade , Ratos , Células-Tronco
7.
Dev Dyn ; 251(4): 556-576, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34547148

RESUMO

MicroRNAs (miRNAs) are small noncoding RNAs with pivotal roles in the control of gene expression. By comparing the miRNA profiles of uninjured vs. regenerating tissues and structures, several studies have found that miRNAs are potentially involved in the regenerative process. By inducing miRNA overexpression or inhibition, elegant experiments have directed regenerative responses validating relevant miRNA-to-target interactions. The zebrafish (Danio rerio) has been the epicenter of regenerative research because of its exceptional capability to self-repair damaged tissues and body structures. In this review, we discuss recent discoveries that have improved our understanding of the impact of gene regulation mediated by miRNAs in the context of the regeneration of fins, heart, retina, and nervous tissue in zebrafish. We compiled what is known about the miRNA control of regeneration in these tissues and investigated the links among up-regulated and down-regulated miRNAs, their putative or validated targets, and the regenerative process. Finally, we briefly discuss the forthcoming prospects, highlighting directions and the potential for further development of this field.


Assuntos
MicroRNAs , Peixe-Zebra , Nadadeiras de Animais/metabolismo , Animais , Regulação da Expressão Gênica , MicroRNAs/genética , Regeneração/genética , Peixe-Zebra/metabolismo
8.
Antibiotics (Basel) ; 10(10)2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34680783

RESUMO

The interaction between bacteriophages and integrins has been reported in different cancer cell lines, and efforts have been undertaken to understand these interactions in tumor cells along with their possible role in gene alterations, with the aim to develop new cancer therapies. Here, we report that the non-specific interaction of T4 and M13 bacteriophages with human PC-3 cells results in differential migration and varied expression of different integrins. PC-3 tumor cells (at 70% confluence) were exposed to 1 × 107 pfu/mL of either lytic T4 bacteriophage or filamentous M13 bacteriophage. After 24 h of exposure, cells were processed for a histochemical analysis, wound-healing migration assay, and gene expression profile using quantitative real-time PCR (qPCR). qPCR was performed to analyze the expression profiles of integrins ITGAV, ITGA5, ITGB1, ITGB3, and ITGB5. Our findings revealed that PC-3 cells interacted with T4 and M13 bacteriophages, with significant upregulation of ITGAV, ITGA5, ITGB3, ITGB5 genes after phage exposure. PC-3 cells also exhibited reduced migration activity when exposed to either T4 or M13 phages. These results suggest that wildtype bacteriophages interact non-specifically with PC-3 cells, thereby modulating the expression of integrin genes and affecting cell migration. Therefore, bacteriophages have future potential applications in anticancer therapies.

9.
Life Sci ; 286: 120028, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34627776

RESUMO

Cell culture is an important tool for the understanding of cell biology and behavior. In vitro cultivation has been increasingly indispensable for biomedical, pharmaceutical, and biotechnology research. Nevertheless, with the demand for in vitro experimentation strategies more representative of in vivo conditions, tridimensional (3D) cell culture models have been successfully developed. Although these 3D models are efficient and address critical questions from different research areas, there are considerable differences between the existing techniques regarding both elaboration and cost. In light of this, this review describes the construction of 3D spheroids using magnetization while bringing the most recent updates in this field. Magnetic 3D cell culture consists of magnetizing cells using an assembly of gold and iron oxide nanoparticles cross-linked with poly-l-lysine nanoparticles. Then, 3D culture formation in special plates with the assistance of magnets for levitation or bioprinting. Here, we discuss magnetic 3D cell culture advancements, including tumor microenvironment, tissue reconstruction, blood vessel engineering, toxicology, cytotoxicity, and 3D culture of cardiomyocytes, bronchial and pancreatic cells.


Assuntos
Técnicas de Cultura de Células/métodos , Magnetismo , Linhagem Celular Tumoral , Humanos , Microambiente Tumoral
10.
Viruses ; 13(9)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34578333

RESUMO

Wild-type or engineered bacteriophages have been reported as therapeutic agents in the treatment of several types of diseases, including cancer. They might be used either as naked phages or as carriers of antitumor molecules. Here, we evaluate the role of bacteriophages M13 and T4 in modulating the expression of genes related to cell adhesion, growth, and survival in the androgen-responsive LNCaP prostatic adenocarcinoma-derived epithelial cell line. LNCaP cells were exposed to either bacteriophage M13 or T4 at a concentration of 1 × 105 pfu/mL, 1 × 106 pfu/mL, and 1 × 107 pfu/mL for 24, 48, and 72 h. After exposure, cells were processed for general morphology, cell viability assay, and gene expression analyses. Neither M13 nor T4 exposure altered cellular morphology, but both decreased the MTT reduction capacity of LNCaP cells at different times of treatment. In addition, genes AKT, ITGA5, ITGB1, ITGB3, ITGB5, MAPK3, and PI3K were significantly up-regulated, whilst the genes AR, HSPB1, ITGAV, and PGC1A were down-regulated. Our results show that bacteriophage M13 and T4 interact with LNCaP cells and effectively promote gene expression changes related to anchorage-dependent survival and androgen signaling. In conclusion, phage therapy may increase the response of PCa treatment with PI3K/AKT pathway inhibitors.


Assuntos
Bacteriófago M13/fisiologia , Bacteriófago T4/fisiologia , Regulação para Baixo , Expressão Gênica , Neoplasias da Próstata , Receptores Androgênicos/genética , Transdução de Sinais/genética , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA