Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Med Biol Eng Comput ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028484

RESUMO

Stroke is a neurological condition that usually results in the loss of voluntary control of body movements, making it difficult for individuals to perform activities of daily living (ADLs). Brain-computer interfaces (BCIs) integrated into robotic systems, such as motorized mini exercise bikes (MMEBs), have been demonstrated to be suitable for restoring gait-related functions. However, kinematic estimation of continuous motion in BCI systems based on electroencephalography (EEG) remains a challenge for the scientific community. This study proposes a comparative analysis to evaluate two artificial neural network (ANN)-based decoders to estimate three lower-limb kinematic parameters: x- and y-axis position of the ankle and knee joint angle during pedaling tasks. Long short-term memory (LSTM) was used as a recurrent neural network (RNN), which reached Pearson correlation coefficient (PCC) scores close to 0.58 by reconstructing kinematic parameters from the EEG features on the delta band using a time window of 250 ms. These estimates were evaluated through kinematic variance analysis, where our proposed algorithm showed promising results for identifying pedaling and rest periods, which could increase the usability of classification tasks. Additionally, negative linear correlations were found between pedaling speed and decoder performance, thereby indicating that kinematic parameters between slower speeds may be easier to estimate. The results allow concluding that the use of deep learning (DL)-based methods is feasible for the estimation of lower-limb kinematic parameters during pedaling tasks using EEG signals. This study opens new possibilities for implementing controllers most robust for MMEBs and BCIs based on continuous decoding, which may allow for maximizing the degrees of freedom and personalized rehabilitation.

2.
Biomed Phys Eng Express ; 10(3)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38417162

RESUMO

Stroke is a neurological syndrome that usually causes a loss of voluntary control of lower/upper body movements, making it difficult for affected individuals to perform Activities of Daily Living (ADLs). Brain-Computer Interfaces (BCIs) combined with robotic systems, such as Motorized Mini Exercise Bikes (MMEB), have enabled the rehabilitation of people with disabilities by decoding their actions and executing a motor task. However, Electroencephalography (EEG)-based BCIs are affected by the presence of physiological and non-physiological artifacts. Thus, movement discrimination using EEG become challenging, even in pedaling tasks, which have not been well explored in the literature. In this study, Common Spatial Patterns (CSP)-based methods were proposed to classify pedaling motor tasks. To address this, Filter Bank Common Spatial Patterns (FBCSP) and Filter Bank Common Spatial-Spectral Patterns (FBCSSP) were implemented with different spatial filtering configurations by varying the time segment with different filter bank combinations for the three methods to decode pedaling tasks. An in-house EEG dataset during pedaling tasks was registered for 8 participants. As results, the best configuration corresponds to a filter bank with two filters (8-19 Hz and 19-30 Hz) using a time window between 1.5 and 2.5 s after the cue and implementing two spatial filters, which provide accuracy of approximately 0.81, False Positive Rates lower than 0.19, andKappaindex of 0.61. This work implies that EEG oscillatory patterns during pedaling can be accurately classified using machine learning. Therefore, our method can be applied in the rehabilitation context, such as MMEB-based BCIs, in the future.


Assuntos
Interfaces Cérebro-Computador , Acidente Vascular Cerebral , Humanos , Atividades Cotidianas , Movimento , Eletroencefalografia/métodos
3.
Sensors (Basel) ; 23(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38067674

RESUMO

Stroke is a debilitating clinical condition resulting from a brain infarction or hemorrhage that poses significant challenges for motor function restoration. Previous studies have shown the potential of applying transcranial direct current stimulation (tDCS) to improve neuroplasticity in patients with neurological diseases or disorders. By modulating the cortical excitability, tDCS can enhance the effects of conventional therapies. While upper-limb recovery has been extensively studied, research on lower limbs is still limited, despite their important role in locomotion, independence, and good quality of life. As the life and social costs due to neuromuscular disability are significant, the relatively low cost, safety, and portability of tDCS devices, combined with low-cost robotic systems, can optimize therapy and reduce rehabilitation costs, increasing access to cutting-edge technologies for neuromuscular rehabilitation. This study explores a novel approach by utilizing the following processes in sequence: tDCS, a motor imagery (MI)-based brain-computer interface (BCI) with virtual reality (VR), and a motorized pedal end-effector. These are applied to enhance the brain plasticity and accelerate the motor recovery of post-stroke patients. The results are particularly relevant for post-stroke patients with severe lower-limb impairments, as the system proposed here provides motor training in a real-time closed-loop design, promoting cortical excitability around the foot area (Cz) while the patient directly commands with his/her brain signals the motorized pedal. This strategy has the potential to significantly improve rehabilitation outcomes. The study design follows an alternating treatment design (ATD), which involves a double-blind approach to measure improvements in both physical function and brain activity in post-stroke patients. The results indicate positive trends in the motor function, coordination, and speed of the affected limb, as well as sensory improvements. The analysis of event-related desynchronization (ERD) from EEG signals reveals significant modulations in Mu, low beta, and high beta rhythms. Although this study does not provide conclusive evidence for the superiority of adjuvant mental practice training over conventional therapy alone, it highlights the need for larger-scale investigations.


Assuntos
Interfaces Cérebro-Computador , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Feminino , Humanos , Masculino , Qualidade de Vida , Recuperação de Função Fisiológica/fisiologia , Reabilitação do Acidente Vascular Cerebral/métodos , Estimulação Transcraniana por Corrente Contínua/métodos , Extremidade Superior , Método Duplo-Cego
4.
Biomed Phys Eng Express ; 9(4)2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37321179

RESUMO

Motor Imagery (MI)-Brain Computer-Interfaces (BCI) illiteracy defines that not all subjects can achieve a good performance in MI-BCI systems due to different factors related to the fatigue, substance consumption, concentration, and experience in the use. To reduce the effects of lack of experience in the use of BCI systems (naïve users), this paper presents the implementation of three Deep Learning (DL) methods with the hypothesis that the performance of BCI systems could be improved compared with baseline methods in the evaluation of naïve BCI users. The methods proposed here are based on Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM)/Bidirectional Long Short-Term Memory (BiLSTM), and a combination of CNN and LSTM used for upper limb MI signal discrimination on a dataset of 25 naïve BCI users. The results were compared with three widely used baseline methods based on the Common Spatial Pattern (CSP), Filter Bank Common Spatial Pattern (FBCSP), and Filter Bank Common Spatial-Spectral Pattern (FBCSSP), in different temporal window configurations. As results, the LSTM-BiLSTM-based approach presented the best performance, according to the evaluation metrics of Accuracy, F-score, Recall, Specificity, Precision, and ITR, with a mean performance of 80% (maximum 95%) and ITR of 10 bits/min using a temporal window of 1.5 s. The DL Methods represent a significant increase of 32% compared with the baseline methods (p< 0.05). Thus, with the outcomes of this study, it is expected to increase the controllability, usability, and reliability of the use of robotic devices in naïve BCI users.


Assuntos
Interfaces Cérebro-Computador , Aprendizado Profundo , Humanos , Imaginação , Reprodutibilidade dos Testes , Eletroencefalografia/métodos
5.
Artigo em Inglês | MEDLINE | ID: mdl-37129900

RESUMO

Kinematic reconstruction of lower-limb movements using electroencephalography (EEG) has been used in several rehabilitation systems. However, the nonlinear relationship between neural activity and limb movement may challenge decoders in real-time Brain-Computer Interface (BCI) applications. This paper proposes a nonlinear neural decoder using an Unscented Kalman Filter (UKF) to infer lower-limb kinematics from EEG signals during pedaling. The results demonstrated maximum decoding accuracy using slow cortical potentials in the delta band (0.1-4 Hz) of 0.33 for Pearson's r-value and 8 for the signal-to-noise ratio (SNR). This leaves an open door to the development of closed-loop EEG-based BCI systems for kinematic monitoring during pedaling rehabilitation tasks.

6.
Sensors (Basel) ; 23(2)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36679501

RESUMO

The development of Brain-Computer Interfaces based on Motor Imagery (MI) tasks is a relevant research topic worldwide. The design of accurate and reliable BCI systems remains a challenge, mainly in terms of increasing performance and usability. Classifiers based on Bayesian Neural Networks are proposed in this work by using the variational inference, aiming to analyze the uncertainty during the MI prediction. An adaptive threshold scheme is proposed here for MI classification with a reject option, and its performance on both datasets 2a and 2b from BCI Competition IV is compared with other approaches based on thresholds. The results using subject-specific and non-subject-specific training strategies are encouraging. From the uncertainty analysis, considerations for reducing computational cost are proposed for future work.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Eletroencefalografia/métodos , Teorema de Bayes , Imaginação , Redes Neurais de Computação , Imagens, Psicoterapia , Algoritmos
7.
J Neural Eng ; 20(1)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36716494

RESUMO

Objective.This work proposes a method for two calibration schemes based on sensory feedback to extract reliable motor imagery (MI) features, and provide classification outputs more correlated to the user's intention.Method.After filtering the raw electroencephalogram (EEG), a two-step method for spatial feature extraction by using the Riemannian covariance matrices (RCM) method and common spatial patterns is proposed here. It uses EEG data from trials providing feedback, in an intermediate step composed of bothkth nearest neighbors and probability analyses, to find periods of time in which the user probably performed well the MI task without feedback. These periods are then used to extract features with better separability, and train a classifier for MI recognition. For evaluation, an in-house dataset with eight healthy volunteers and two post-stroke patients that performed lower-limb MI, and consequently received passive movements as feedback was used. Other popular public EEG datasets (such as BCI Competition IV dataset IIb, among others) from healthy subjects that executed upper-and lower-limbs MI tasks under continuous visual sensory feedback were further used.Results.The proposed system based on the Riemannian geometry method in two-steps (RCM-RCM) outperformed significantly baseline methods, reaching average accuracy up to 82.29%. These findings show that EEG data on periods providing passive movement can be used to contribute greatly during MI feature extraction.Significance.Unconscious brain responses elicited over the sensorimotor areas may be avoided or greatly reduced by applying our approach in MI-based brain-computer interfaces (BCIs). Therefore, BCI's outputs more correlated to the user's intention can be obtained.


Assuntos
Interfaces Cérebro-Computador , Humanos , Calibragem , Retroalimentação Sensorial , Imagens, Psicoterapia , Eletroencefalografia/métodos , Imaginação/fisiologia , Algoritmos
8.
Sensors (Basel) ; 22(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35746121

RESUMO

COVID-19 occurs due to infection through respiratory droplets containing the SARS-CoV-2 virus, which are released when someone sneezes, coughs, or talks. The gold-standard exam to detect the virus is Real-Time Polymerase Chain Reaction (RT-PCR); however, this is an expensive test and may require up to 3 days after infection for a reliable result, and if there is high demand, the labs could be overwhelmed, which can cause significant delays in providing results. Biomedical data (oxygen saturation level-SpO2, body temperature, heart rate, and cough) are acquired from individuals and are used to help infer infection by COVID-19, using machine learning algorithms. The goal of this study is to introduce the Integrated Portable Medical Assistant (IPMA), which is a multimodal piece of equipment that can collect biomedical data, such as oxygen saturation level, body temperature, heart rate, and cough sound, and helps infer the diagnosis of COVID-19 through machine learning algorithms. The IPMA has the capacity to store the biomedical data for continuous studies and can be used to infer other respiratory diseases. Quadratic kernel-free non-linear Support Vector Machine (QSVM) and Decision Tree (DT) were applied on three datasets with data of cough, speech, body temperature, heart rate, and SpO2, obtaining an Accuracy rate (ACC) and Area Under the Curve (AUC) of approximately up to 88.0% and 0.85, respectively, as well as an ACC up to 99% and AUC = 0.94, respectively, for COVID-19 infection inference. When applied to the data acquired with the IMPA, these algorithms achieved 100% accuracy. Regarding the easiness of using the equipment, 36 volunteers reported that the IPMA has a high usability, according to results from two metrics used for evaluation: System Usability Scale (SUS) and Post Study System Usability Questionnaire (PSSUQ), with scores of 85.5 and 1.41, respectively. In light of the worldwide needs for smart equipment to help fight the COVID-19 pandemic, this new equipment may help with the screening of COVID-19 through data collected from biomedical signals and cough sounds, as well as the use of machine learning algorithms.


Assuntos
COVID-19 , Algoritmos , COVID-19/diagnóstico , Tosse/diagnóstico , Humanos , Aprendizado de Máquina , Pandemias , SARS-CoV-2
9.
Physiol Meas ; 43(7)2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35728793

RESUMO

Objective.This study proposes a U-net shaped Deep Neural Network (DNN) model to extract remote photoplethysmography (rPPG) signals from skin color signals to estimate Pulse Rate (PR).Approach.Three input window sizes are used in the DNN: 256 samples (5.12 s), 512 samples (10.24 s), and 1024 (20.48 s). A data augmentation algorithm based on interpolation is also used here to artificially increase the number of training samples.Main results.The proposed model outperformed a prior-knowledge rPPG method by using input signals with window of 256 and 512 samples. Also, it was found that the data augmentation procedure only increased the performance for the window of 1024 samples. The trained model achieved a Mean Absolute Error (MAE) of 3.97 Beats per Minute (BPM) and Root Mean Squared Error (RMSE) of 6.47 BPM, for the 256 samples window, and MAE of 3.00 BPM and RMSE of 5.45 BPM for the window of 512 samples. On the other hand, the prior-knowledge rPPG method got a MAE of 8.04 BPM and RMSE of 16.63 BPM for the window of 256 samples, and MAE of 3.49 BPM and RMSE of 7.92 BPM for the window of 512 samples. For the longest window (1024 samples), the concordance of the predicted PRs from the DNNs and the true PRs was higher when applying the data augmentation procedure.Significance.These results demonstrate a big potential of this technique for PR estimation, showing that the DNN proposed here may generate reliable rPPG signals even with short window lengths (5.12 s and 10.24 s), suggesting that it needs less data for a faster rPPG measurement and PR estimation.


Assuntos
Aprendizado Profundo , Fotopletismografia , Algoritmos , Frequência Cardíaca , Redes Neurais de Computação , Fotopletismografia/métodos , Processamento de Sinais Assistido por Computador
10.
Sensors (Basel) ; 21(21)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34770553

RESUMO

Motor Imagery (MI)-based Brain-Computer Interfaces (BCIs) have been widely used as an alternative communication channel to patients with severe motor disabilities, achieving high classification accuracy through machine learning techniques. Recently, deep learning techniques have spotlighted the state-of-the-art of MI-based BCIs. These techniques still lack strategies to quantify predictive uncertainty and may produce overconfident predictions. In this work, methods to enhance the performance of existing MI-based BCIs are proposed in order to obtain a more reliable system for real application scenarios. First, the Monte Carlo dropout (MCD) method is proposed on MI deep neural models to improve classification and provide uncertainty estimation. This approach was implemented using Shallow Convolutional Neural Network (SCNN-MCD) and with an ensemble model (E-SCNN-MCD). As another contribution, to discriminate MI task predictions of high uncertainty, a threshold approach is introduced and tested for both SCNN-MCD and E-SCNN-MCD approaches. The BCI Competition IV Databases 2a and 2b were used to evaluate the proposed methods for both subject-specific and non-subject-specific strategies, obtaining encouraging results for MI recognition.


Assuntos
Interfaces Cérebro-Computador , Imaginação , Algoritmos , Eletroencefalografia , Humanos , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA