Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Endocrinol Diabetes Nutr (Engl Ed) ; 69(6): 409-417, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35817546

RESUMO

BACKGROUND: Graves' disease is an autoimmune disorder characterised by excessive production of thyroid hormones, which induces increased cellular metabolism in most tissues and increased production of reactive oxygen species (ROS). The aim of this work was to analyse the effect of ROS on cell viability and the expression of catalase (CAT), glutathione peroxidase-1 (GPx-1), superoxide dismutase (SOD-1) and DNA methyltransferase-1 (DNMT-1) in peripheral blood mononuclear cells (PBMC) from patients with newly diagnosed Graves' disease or treated with methimazole. PATIENTS AND METHODS: For this study, women patients with newly diagnosed Graves' disease (n=18), treated with methimazole (n=6) and healthy subjects (n=15) were recruited. ROS were evaluated by flow cytometry, and the viability/apoptosis of PBMC was analysed by flow cytometry and fluorescence microscopy. Genomic expression of CAT, GPx-1, SOD-1 and DNMT-1 was quantified by real-time PCR. RESULTS: We found high levels of ROS and increased expression of CAT, GPx-1, SOD-1 and DNMT-1 in PBMC from patients with newly diagnosed Graves' disease. Methimazole treatment reversed these parameters. Cell viability was similar in all study groups. CONCLUSIONS: ROS induces the expression of CAT, GPx-1, and SOD-1. The activity of these enzymes may contribute to the protection of PBMC from the harmful effect of free radicals on cell viability. Increased expression of DNMT-1 may be associated with aberrant methylation patterns in immunoregulatory genes contributing to autoimmunity in Graves' disease.


Assuntos
Doença de Graves , Metimazol , DNA/metabolismo , Feminino , Doença de Graves/tratamento farmacológico , Humanos , Leucócitos Mononucleares/metabolismo , Metimazol/farmacologia , Metimazol/uso terapêutico , Metiltransferases/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA