Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 101(11): 1941-1948, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30677319

RESUMO

Sclerotinia head rot (SHR) is one of the most serious constraints to sunflower (Helianthus annuus L. var. macrocarpus) production worldwide. Here, we evaluated the response to SHR in a sunflower inbred panel from a large INTA germplasm collection, consisting of 137 inbred lines (ILs). Field trials were performed over five consecutive seasons using a twice-replicated randomized complete-block design. Disease incidence, disease severity, incubation period, and area under disease progress curve for disease incidence and severity were determined after controlled inoculation with the pathogen. Statistical analysis using mixed-effect models detected significant differences among ILs for all variables (P < 0.001). In addition, principal component analysis (PCA) and distance-based methods were used to classify the ILs according to their response to SHR, with ILs ALB2/5261 and 5383 emerging as the most resistant. Broad-sense heritability estimates ranged from 20.64% for disease severity to 10.58% for incubation period. The ample phenotypic variability of our collection, along with the moderate heritability estimates, highlight the importance of molecular breeding approaches to gain new insights into the genetic basis of sunflower resistance to SHR. The exhaustive phenotypic characterization presented here provides a reliable set of variables to comprehensively evaluate the disease and identifies two new sources of resistance to SHR.


Assuntos
Ascomicetos , Helianthus , Melhoramento Vegetal , Doenças das Plantas , Resistência à Doença/genética , Helianthus/microbiologia , Humanos , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle
2.
Arch Virol ; 157(6): 1149-53, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22398913

RESUMO

Epinotia aporema granulovirus (EpapGV) has attracted interest as a potential biocontrol agent of the soybean pest Epinotia aporema in Argentina. Studies on virus/host interactions conducted so far have lacked an accurate method to assess the progress of virus load during the infection process. The present paper reports the development of a real-time PCR for EpapGV and its application to describe viral kinetics following ingestion of two different virus doses by last-instar E. aporema larvae. Real-time PCR was shown to be a reliable method to detect and quantify the presence of EpapGV in the analyzed samples. The increase in virus titer (log) exhibited a sigmoidal pattern, with an exponential growth phase between 24 and 48 h postinfection for both initial doses tested.


Assuntos
Baculoviridae/isolamento & purificação , Lepidópteros/virologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Animais , Baculoviridae/química , Baculoviridae/classificação , Baculoviridae/genética , Cinética , Proteínas Virais/química , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA