Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 8: 747226, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34708105

RESUMO

Molecular diagnosis of bovine tuberculosis plays an essential role in the epidemiological knowledge of the disease. Bovine tuberculosis caused by Mycobacterium bovis represents a risk to human health. This study aimed to perform the genotypic characterization of M. bovis isolated from bovines diagnosed as tuberculosis from dairy herds in the state of Pernambuco, Brazil. Granulomas from 30 bovines were sent for microbiological culture, and colonies compatible with Mycobacterium spp. were obtained in at least one culture from 17/30 granulomas. All isolates were confirmed to be M. bovis by spoligotyping and 24loci MIRU-VNTR typing. While spoligotyping characterized the isolates as SB0121, SB0295, SB0852, SB0120, and an unclassified genotype, 24loci MIRU-VNTR rendered two clusters of two isolates each and 13 unique profiles. Loci ETR-A showed higher discriminatory power, and loci (ETR-B, ETR-C, MIRU16, MIRU27, and QUB26) showed moderate allelic diversity. This is the first study on the genetic variability of the infectious agent cause of bovine TB in Pernambuco and demonstrates variability of strains in the state. Thus, it corroborates the importance of this microorganism as agent of bovine tuberculosis and its zoonotic potential, this epidemiological tool being a determinant in the rigor of the sanitary practices of disease control in dairy herds.

2.
BMC Infect Dis ; 19(1): 1047, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31823734

RESUMO

BACKGROUND: Molecular tests can allow the rapid detection of tuberculosis (TB) and multidrug-resistant TB (MDR-TB). TB-SPRINT 59-Plex Beamedex® is a microbead-based assay developed for the simultaneous spoligotyping and detection of MDR-TB. The accuracy and cost evaluation of new assays and technologies are of great importance for their routine use in clinics and in research laboratories. The aim of this study was to evaluate the performance of TB-SPRINT at three laboratory research centers in Brazil and calculate its mean cost (MC) and activity-based costing (ABC). METHODS: TB-SPRINT data were compared with the phenotypic and genotypic profiles obtained using Bactec™ MGIT™ 960 system and Genotype® MTBDRplus, respectively. RESULTS: Compared with MGIT, the accuracies of TB-SPRINT for the detection of rifampicin and isoniazid resistance ranged from 81 to 92% and 91.3 to 93.9%, respectively. Compared with MTBDRplus, the accuracies of TB-SPRINT for rifampicin and isoniazid were 99 and 94.2%, respectively. Moreover, the MC and ABC of TB-SPRINT were USD 127.78 and USD 109.94, respectively. CONCLUSION: TB-SPRINT showed good results for isoniazid and rifampicin resistance detection, but still needs improvement to achieve In Vitro Diagnostics standards.


Assuntos
Farmacorresistência Bacteriana , Citometria de Fluxo/métodos , Mycobacterium tuberculosis/genética , Tuberculose/diagnóstico , Antituberculosos/farmacologia , Proteínas de Bactérias/genética , Catalase/genética , Custos e Análise de Custo , RNA Polimerases Dirigidas por DNA/genética , Farmacorresistência Bacteriana/efeitos dos fármacos , Citometria de Fluxo/economia , Genótipo , Humanos , Isoniazida/farmacologia , Testes de Sensibilidade Microbiana , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/isolamento & purificação , Regiões Promotoras Genéticas , Kit de Reagentes para Diagnóstico , Rifampina , Sensibilidade e Especificidade , Tuberculose/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA