Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 10(2)2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-32012926

RESUMO

Porous Si-SiO2 UV microcavities are used to modulate a broad responsivity photodetector (GVGR-T10GD) with a detection range from 300 to 510 nm. The UV microcavity filters modified the responsivity at short wavelengths, while in the visible range the filters only attenuated the responsivity. All microcavities had a localized mode close to 360 nm in the UV-A range, and this meant that porous Si-SiO2 filters cut off the photodetection range of the photodetector from 300 to 350 nm, where microcavities showed low transmission. In the short-wavelength range, the photons were absorbed and did not contribute to the photocurrent. Therefore, the density of recombination centers was very high, and the photodetector sensitivity with a filter was lower than the photodetector without a filter. The maximum transmission measured at the localized mode (between 356 and 364 nm) was dominant in the UV-A range and enabled the flow of high energy photons. Moreover, the filters favored light transmission with a wavelength from 390 nm to 510 nm, where photons contributed to the photocurrent. Our filters made the photodetector more selective inside the specific UV range of wavelengths. This was a novel result to the best of our knowledge.

2.
Materials (Basel) ; 11(5)2018 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-29883393

RESUMO

Photonic crystals have been an object of interest because of their properties to inhibit certain wavelengths and allow the transmission of others. Using these properties, we designed a photonic structure known as photodyne formed by two porous silicon one-dimensional photonic crystals with an air defect between them. When the photodyne is illuminated with appropriate light, it allows us to generate electromagnetic forces within the structure that can be maximized if the light becomes localized inside the defect region. These electromagnetic forces allow the microcavity to oscillate mechanically. In the experiment, a chopper was driven by a signal generator to modulate the laser light that was used. The driven frequency and the signal modulation waveform (rectangular, sinusoidal or triangular) were changed with the idea to find optimal conditions for the structure to oscillate. The microcavity displacement amplitude, velocity amplitude and Fourier spectrum of the latter and its frequency were measured by means of a vibrometer. The mechanical oscillations are modeled and compared with the experimental results and show good agreement. For external frequency values of 5 Hz and 10 Hz, the best option was a sinusoidal waveform, which gave higher photodyne displacements and velocity amplitudes. Nonetheless, for an external frequency of 15 Hz, the best option was the rectangular waveform.

3.
Materials (Basel) ; 11(6)2018 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-29861442

RESUMO

In this work, we have followed ethanol evaporation at two different concentrations using a fiber optic spectrometer and a screen capture application with a resolving capacity of 10 ms. The transmission spectra are measured in the visible-near-infrared range with a resolution of 0.5 nm. Porous Silicon microcavities were fabricated by electrochemistry etching of crystalline silicon. The microcavities were designed to have a localized mode at 472 nm (blue band). Ethanol infiltration produces a redshift of approximately 17 nm. After a few minutes, a phase change from liquid to vapor occurs and the localized wavelength shifts back to the blue band. This process happens in a time window of only 60 ms. Our results indicate a difference between two distinct ethanol concentrations (70% and 35%). For the lower ethanol concentration, the blue shift rate process is slower in the first 30 ms and then it equals the high ethanol concentration blue shift rate. We have repeated the same process, but in an extended mode (750 nm), and have obtained similar results. Our results show that these photonic structures and with the spectroscopic technique used here can be implemented as a sensor with sufficient sensitivity and selectivity. Finally, since the photonic structure is a membrane, it can also be used as a transducer. For instance, by placing this photonic structure on top of a fast photodetector whose photo-response lies within the same bandwidth, the optical response can be transferred to an electrical signal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA