Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Immun Inflamm Dis ; 12(7): e1353, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39056544

RESUMO

BACKGROUND: SARS-CoV2 virus, responsible for the COVID-19 pandemic, has four structural proteins and 16 nonstructural proteins. S-protein is one of the structural proteins exposed on the virus surface and is the main target for producing neutralizing antibodies and vaccines. The S-protein forms a trimer that can bind the angiotensin-converting enzyme 2 (ACE2) through its receptor binding domain (RBD) for cell entry. AIMS: The goal of this study was to express in HEK293 cells a new RBD recombinant protein in a constitutive and stable manner in order to use it as an alternative immunogen and diagnostic tool for COVID-19. MATERIALS & METHODS: The protein was designed to contain an immunoglobulin signal sequence, an explanded C-terminal section of the RBD, a region responsible for the bacteriophage T4 trimerization inducer, and six histidines in the pCDNA-3.1 plasmid. Following transformation, the cells were selected with geneticin-G418 and purified from serum-fre culture supernatants using Ni2+-agarand size exclusion chromatography. The protein was structurally identified by cross-linking and circular dichroism experiments, and utilized to immunize mice in conjuction with AS03 or alum adjuvants. The mice sera were examined for antibody recognition, receptor-binding inhibition, and virus neutralization, while spleens were evaluated for γ-interferon production in the presence of RBD. RESULTS: The protein released in the culture supernatant of cells, and exhibited a molecular mass of 135 kDa with a secondary structure like the monomeric and trimeric RBD. After purification, it formed a multimeric structure comprising trimers and hexamers, which were able to bind the ACE2 receptor. It generated high antibody titers in mice when combined with AS03 adjuvant (up to 1:50,000). The sera were capable of inhibiting binding of biotin-labeled ACE2 to the virus S1 subunit and could neutralize the entry of the Wuhan virus strain into cells at dilutions up to 1:2000. It produced specific IFN-γ producing cells in immunized mouse splenocytes. DISCUSSION: Our data describe a new RBD containing protein, forming trimers and hexamers, which are able to induce a protective humoral and cellular response against SARS-CoV2. CONCLUSION: These results add a new arsenal to combat COVID-19, as an alternative immunogen or antigen for diagnosis.


Assuntos
Enzima de Conversão de Angiotensina 2 , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Proteínas Recombinantes , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , Humanos , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/química , Camundongos , Anticorpos Neutralizantes/imunologia , SARS-CoV-2/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Células HEK293 , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , Camundongos Endogâmicos BALB C , Feminino , Multimerização Proteica , Domínios Proteicos/imunologia , Ligação Proteica
2.
Appl Plant Sci ; 3(2)2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25699216

RESUMO

UNLABELLED: • PREMISE OF THE STUDY: We developed and validated microsatellite primers for Vellozia squamata (Velloziaceae), an endemic species of the cerrado (Brazilian savannas), to investigate the influence of different fire regimes on its genetic diversity and population structure. • METHODS AND RESULTS: Using a selective hybridization method, we tested 51 SSR loci using a natural population of V. squamata and obtained 47 amplifiable loci. Among these, 26 loci were polymorphic and the average values of genetic diversity were: average number of alleles per locus ([Formula: see text]) = 6.54, average number of alleles per polymorphic locus ([Formula: see text]) = 7.13, average observed heterozygosity [Formula: see text] = 0.22, average expected heterozygosity [Formula: see text] = 0.49, and average fixation index [Formula: see text] = 0.55. • CONCLUSIONS: These 26 loci allowed us to assess the effects of distinct fire regimes on the genetic structure of V. squamata populations with the aim of establishing strategies for the conservation of this endemic species. The markers can also be useful for future pharmaceutical studies, as the species has great potential for medicinal and cosmetic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA