Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 17(4): e0011229, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37027391

RESUMO

Plasmodium vivax is a major challenge for malaria control due to its wide geographic distribution, high frequency of submicroscopic infections, and ability to induce relapses due to the latent forms present in the liver (hypnozoites). Deepening our knowledge of parasite biology and its molecular components is key to develop new tools for malaria control and elimination. This study aims to investigate and characterize a P. vivax protein (PvVir14) for its role in parasite biology and its interactions with the immune system. We collected sera or plasma from P.vivax-infected subjects in Brazil (n = 121) and Cambodia (n = 55), and from P. falciparum-infected subjects in Mali (n = 28), to assess antibody recognition of PvVir14. Circulating antibodies against PvVir14 appeared in 61% and 34.5% of subjects from Brazil and Cambodia, respectively, versus none (0%) of the P. falciparum-infected subjects from Mali who have no exposure to P. vivax. IgG1 and IgG3 most frequently contributed to anti-PvVir14 responses. PvVir14 antibody levels correlated with those against other well-characterized sporozoite/liver (PvCSP) and blood stage (PvDBP-RII) antigens, which were recognized by 7.6% and 42% of Brazilians, respectively. Concerning the cellular immune profiling of Brazilian subjects, PvVir14 seroreactive individuals displayed significantly higher levels of circulating atypical (CD21- CD27-) B cells, raising the possibility that atypical B cells may be contribute to the PvVir14 antibody response. When analyzed at a single-cell level, the B cell receptor gene hIGHV3-23 was only seen in subjects with active P.vivax infection where it comprised 20% of V gene usage. Among T cells, CD4+ and CD8+ levels differed (lower and higher, respectively) between subjects with versus without antibodies to PvVir14, while NKT cell levels were higher in those without antibodies. Specific B cell subsets, anti-PvVir14 circulating antibodies, and NKT cell levels declined after treatment of P. vivax. This study provides the immunological characterization of PvVir14, a unique P. vivax protein, and possible association with acute host's immune responses, providing new information of specific host-parasite interaction. Trial registration: TrialClinicalTrials.gov Identifier: NCT00663546 & ClinicalTrials.gov NCT02334462.


Assuntos
Malária Falciparum , Malária Vivax , Humanos , Plasmodium vivax/genética , Proteínas de Protozoários/genética , Antígenos de Protozoários , Plasmodium falciparum , Anticorpos Antiprotozoários , Malária Vivax/parasitologia , Malária Falciparum/epidemiologia , Brasil/epidemiologia , Família , Imunoglobulina G , Mali/epidemiologia
2.
PLoS Pathog ; 16(8): e1008230, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32797076

RESUMO

Neutrophil extracellular traps (NETs) evolved as a unique effector mechanism contributing to resistance against infection that can also promote tissue damage in inflammatory conditions. Malaria infection can trigger NET release, but the mechanisms and consequences of NET formation in this context remain poorly characterized. Here we show that patients suffering from severe malaria had increased amounts of circulating DNA and increased neutrophil elastase (NE) levels in plasma. We used cultured erythrocytes and isolated human neutrophils to show that Plasmodium-infected red blood cells release macrophage migration inhibitory factor (MIF), which in turn caused NET formation by neutrophils in a mechanism dependent on the C-X-C chemokine receptor type 4 (CXCR4). NET production was dependent on histone citrullination by peptidyl arginine deiminase-4 (PAD4) and independent of reactive oxygen species (ROS), myeloperoxidase (MPO) or NE. In vitro, NETs functioned to restrain parasite dissemination in a mechanism dependent on MPO and NE activities. Finally, C57/B6 mice infected with P. berghei ANKA, a well-established model of cerebral malaria, presented high amounts of circulating DNA, while treatment with DNAse increased parasitemia and accelerated mortality, indicating a role for NETs in resistance against Plasmodium infection.


Assuntos
Eritrócitos/imunologia , Armadilhas Extracelulares/imunologia , Fatores Inibidores da Migração de Macrófagos/metabolismo , Malária/imunologia , Neutrófilos/imunologia , Plasmodium/imunologia , Receptores CXCR4/metabolismo , Animais , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/parasitologia , Humanos , Malária/metabolismo , Malária/parasitologia , Malária/patologia , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Neutrófilos/parasitologia , Parasitemia/imunologia , Parasitemia/metabolismo , Parasitemia/parasitologia , Parasitemia/patologia
3.
J Infect Dis ; 219(1): 110-120, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30534974

RESUMO

Background: In pregnancy, Plasmodium falciparum parasites express the surface antigen VAR2CSA, which mediates adherence of red blood cells to chondroitin sulfate A (CSA) in the placenta. VAR2CSA antibodies are generally acquired during infection in pregnancy and are associated with protection from placental malaria. We observed previously that men and children in Colombia also had antibodies to VAR2CSA, but the origin of these antibodies was unknown. Here, we tested whether infection with Plasmodium vivax is an alternative mechanism of acquisition of VAR2CSA antibodies. Methods: We analyzed sera from nonpregnant Colombians and Brazilians exposed to P. vivax and monoclonal antibodies raised against P. vivax Duffy binding protein (PvDBP). Cross-reactivity to VAR2CSA was characterized by enzyme-linked immunosorbent assay, immunofluorescence assay, and flow cytometry, and antibodies were tested for inhibition of parasite binding to CSA. Results: Over 50% of individuals had antibodies that recognized VAR2CSA. Affinity-purified PvDBP human antibodies and a PvDBP monoclonal antibody recognized VAR2CSA, showing that PvDBP can give rise to cross-reactive antibodies. Importantly, the monoclonal antibody inhibited parasite binding to CSA, which is the primary in vitro correlate of protection from placental malaria. Conclusions: These data suggest that PvDBP induces antibodies that functionally recognize VAR2CSA, revealing a novel mechanism of cross-species immune recognition to falciparum malaria.


Assuntos
Antígenos de Protozoários/imunologia , Antígenos de Superfície/imunologia , Reações Cruzadas/imunologia , Malária Falciparum/imunologia , Malária Vivax/imunologia , Plasmodium falciparum/imunologia , Plasmodium vivax/imunologia , Proteínas de Protozoários/imunologia , Receptores de Superfície Celular/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antiprotozoários/sangue , Criança , Sulfatos de Condroitina , Colômbia , Eritrócitos/parasitologia , Eutérios/imunologia , Feminino , Humanos , Imunidade , Gravidez
4.
Mem Inst Oswaldo Cruz ; 106 Suppl 1: 64-9, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21881758

RESUMO

Malaria during pregnancy can be severe in non-immune women, but in areas of stable transmission, where women are semi-immune and often asymptomatic during infection, malaria is an insidious cause of disease and death for mothers and their offspring. Sequelae, such as severe anaemia and hypertension in the mother and low birth weight and infant mortality in the offspring, are often not recognised as consequences of infection. Pregnancy malaria, caused by Plasmodium falciparum, is mediated by infected erythrocytes (IEs) that bind to chondroitin sulphate A and are sequestered in the placenta. These parasites have a unique adhesion phenotype and distinct antigenicity, which indicates that novel targets may be required for development of an effective vaccine. Women become resistant to malaria as they acquire antibodies against placental IE, which leads to higher haemoglobin levels and heavier babies. Proteins exported from the placental parasites have been identified, including both variant and conserved antigens, and some of these are in preclinical development for vaccines. A vaccine that prevents P. falciparum malaria in pregnant mothers is feasible and would potentially save hundreds of thousands of lives each year.


Assuntos
Sulfatos de Condroitina/metabolismo , Eritrócitos/parasitologia , Malária Falciparum/imunologia , Complicações Parasitárias na Gravidez/imunologia , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Adesão Celular/imunologia , Eritrócitos/imunologia , Eritrócitos/fisiologia , Feminino , Humanos , Vacinas Antimaláricas , Malária Falciparum/sangue , Malária Falciparum/parasitologia , Placenta/metabolismo , Placenta/parasitologia , Gravidez , Complicações Parasitárias na Gravidez/sangue , Complicações Parasitárias na Gravidez/parasitologia
5.
Mem. Inst. Oswaldo Cruz ; 106(supl.1): 64-69, Aug. 2011. ilus, graf
Artigo em Inglês | LILACS | ID: lil-597245

RESUMO

Malaria during pregnancy can be severe in non-immune women, but in areas of stable transmission, where women are semi-immune and often asymptomatic during infection, malaria is an insidious cause of disease and death for mothers and their offspring. Sequelae, such as severe anaemia and hypertension in the mother and low birth weight and infant mortality in the offspring, are often not recognised as consequences of infection. Pregnancy malaria, caused by Plasmodium falciparum, is mediated by infected erythrocytes (IEs) that bind to chondroitin sulphate A and are sequestered in the placenta. These parasites have a unique adhesion phenotype and distinct antigenicity, which indicates that novel targets may be required for development of an effective vaccine. Women become resistant to malaria as they acquire antibodies against placental IE, which leads to higher haemoglobin levels and heavier babies. Proteins exported from the placental parasites have been identified, including both variant and conserved antigens, and some of these are in preclinical development for vaccines. A vaccine that prevents P. falciparum malaria in pregnant mothers is feasible and would potentially save hundreds of thousands of lives each year.


Assuntos
Feminino , Humanos , Gravidez , Sulfatos de Condroitina , Eritrócitos , Malária Falciparum/imunologia , Complicações Parasitárias na Gravidez/imunologia , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Adesão Celular/imunologia , Eritrócitos/imunologia , Eritrócitos/fisiologia , Vacinas Antimaláricas , Malária Falciparum/sangue , Malária Falciparum , Placenta , Placenta , Complicações Parasitárias na Gravidez/sangue , Complicações Parasitárias na Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA