Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 18(6): e1009946, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35696423

RESUMO

Venezuelan equine encephalitis virus (VEEV) is a positively-stranded RNA arbovirus of the genus Alphavirus that causes encephalitis in humans. Cynomolgus macaques are a relevant model of the human disease caused by VEEV and are useful in exploring pathogenic mechanisms and the host response to VEEV infection. Macaques were exposed to small-particle aerosols containing virus derived from an infectious clone of VEEV strain INH-9813, a subtype IC strain isolated from a human infection. VEEV-exposed macaques developed a biphasic fever after infection similar to that seen in humans. Maximum temperature deviation correlated with the inhaled dose, but fever duration did not. Neurological signs, suggestive of virus penetration into the central nervous system (CNS), were predominantly seen in the second febrile period. Electroencephalography data indicated a statistically significant decrease in all power bands and circadian index during the second febrile period that returned to normal after fever resolved. Intracranial pressure increased late in the second febrile period. On day 6 post-infection macaques had high levels of MCP-1 and IP-10 chemokines in the CNS, as well as a marked increase of T lymphocytes and activated microglia. More than four weeks after infection, VEEV genomic RNA was found in the brain, cerebrospinal fluid and cervical lymph nodes. Pro-inflammatory cytokines & chemokines, infiltrating leukocytes and pathological changes were seen in the CNS tissues of macaques euthanized at these times. These data are consistent with persistence of virus replication and/or genomic RNA and potentially, inflammatory sequelae in the central nervous system after resolution of acute VEEV disease.


Assuntos
Vírus da Encefalite Equina Venezuelana , Encefalomielite Equina Venezuelana , Animais , Sistema Nervoso Central , Vírus da Encefalite Equina Venezuelana/genética , Cavalos/genética , Inflamação , Macaca fascicularis , RNA Viral/genética
2.
Viruses ; 15(1)2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36680046

RESUMO

The Department of Defense recently began an effort to improve and standardize virus challenge materials and efficacy determination strategies for testing therapeutics and vaccines. This includes stabilization of virus genome sequences in cDNA form where appropriate, use of human-derived virus isolates, and noninvasive strategies for determination of challenge virus replication. Eventually, it is desired that these approaches will satisfy the FDA "Animal Rule" for licensure, which substitutes animal efficacy data when human data are unlikely to be available. To this end, we created and examined the virulence phenotype of cDNA clones of prototypic human infection-derived strains of the alphaviruses, Venezuelan (VEEV INH9813), eastern (EEEV V105) and western (WEEV Fleming) equine encephalitis viruses, and created fluorescent and luminescent reporter expression vectors for evaluation of replication characteristics in vitro and in vivo. Sequences of minimally passaged isolates of each virus were used to synthesize full-length cDNA clones along with a T7 transcription promoter-based bacterial propagation vector. Viruses generated from the cDNA clones were compared with other "wild type" strains derived from cDNA clones and GenBank sequences to identify and eliminate putative tissue culture artifacts accumulated in the cell passaged biological stocks. This was followed by examination of aerosol and subcutaneous infection and disease in mouse models. A mutation that increased heparan sulfate binding was identified in the VEEV INH9813 biological isolate sequence and eliminated from the cDNA clone. Viruses derived from the new human isolate cDNA clones showed similar mouse virulence to existing clone-derived viruses after aerosol or subcutaneous inoculation.


Assuntos
Vírus da Encefalite Equina Venezuelana , Vírus da Encefalite Equina do Oeste , Estados Unidos , Humanos , Animais , Cavalos , Camundongos , DNA Complementar/genética , Fenótipo , Células Clonais
3.
PLoS Med ; 17(11): e1003434, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33180775

RESUMO

BACKGROUND: Effective health system interventions may help address the disproportionate burden of diabetes in low- and middle-income countries (LMICs). We assessed the impact of health system interventions to improve outcomes for adults with type 2 diabetes in LMICs. METHODS AND FINDINGS: We searched Ovid MEDLINE, Cochrane Library, EMBASE, African Index Medicus, LILACS, and Global Index Medicus from inception of each database through February 24, 2020. We included randomized controlled trials (RCTs) of health system interventions targeting adults with type 2 diabetes in LMICs. Eligible studies reported at least 1 of the following outcomes: glycemic change, mortality, quality of life, or cost-effectiveness. We conducted a meta-analysis for the glycemic outcome of hemoglobin A1c (HbA1c). GRADE and Cochrane Effective Practice and Organisation of Care methods were used to assess risk of bias for the glycemic outcome and to prepare a summary of findings table. Of the 12,921 references identified in searches, we included 39 studies in the narrative review of which 19 were cluster RCTs and 20 were individual RCTs. The greatest number of studies were conducted in the East Asia and Pacific region (n = 20) followed by South Asia (n = 7). There were 21,080 total participants enrolled across included studies and 10,060 total participants in the meta-analysis of HbA1c when accounting for the design effect of cluster RCTs. Non-glycemic outcomes of mortality, health-related quality of life, and cost-effectiveness had sparse data availability that precluded quantitative pooling. In the meta-analysis of HbA1c from 35 of the included studies, the mean difference was -0.46% (95% CI -0.60% to -0.31%, I2 87.8%, p < 0.001) overall, -0.37% (95% CI -0.64% to -0.10%, I2 60.0%, n = 7, p = 0.020) in multicomponent clinic-based interventions, -0.87% (-1.20% to -0.53%, I2 91.0%, n = 13, p < 0.001) in pharmacist task-sharing studies, and -0.27% (-0.50% to -0.04%, I2 64.1%, n = 7, p = 0.010) in trials of diabetes education or support alone. Other types of interventions had few included studies. Eight studies were at low risk of bias for the summary assessment of glycemic control, 15 studies were at unclear risk, and 16 studies were at high risk. The certainty of evidence for glycemic control by subgroup was moderate for multicomponent clinic-based interventions but was low or very low for other intervention types. Limitations include the lack of consensus definitions for health system interventions, differences in the quality of underlying studies, and sparse data availability for non-glycemic outcomes. CONCLUSIONS: In this meta-analysis, we found that health system interventions for type 2 diabetes may be effective in improving glycemic control in LMICs, but few studies are available from rural areas or low- or lower-middle-income countries. Multicomponent clinic-based interventions had the strongest evidence for glycemic benefit among intervention types. Further research is needed to assess non-glycemic outcomes and to study implementation in rural and low-income settings.


Assuntos
Planejamento em Saúde Comunitária , Países em Desenvolvimento/estatística & dados numéricos , Diabetes Mellitus Tipo 2/epidemiologia , Educação em Saúde/estatística & dados numéricos , Adulto , Ásia , Planejamento em Saúde Comunitária/economia , Programas Governamentais/estatística & dados numéricos , Educação em Saúde/economia , Humanos , Assistência Médica/estatística & dados numéricos , Qualidade de Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA