Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Front Cell Infect Microbiol, v. 12, 97208, nov. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4710

RESUMO

Enteroaggregative Escherichia coli (EAEC) is an important cause of diarrhea in children and adults worldwide. This pathotype is phenotypically characterized by the aggregative-adherence (AA) pattern in HEp-2 cells and genetically associated to the presence of the aatA gene. EAEC pathogenesis relies in different virulence factors. At least, three types of adhesins have been specifically associated with EAEC strains: the five variants of the aggregative adherence fimbriae (AAF), the aggregative forming pilus (AFP) and more recently, a fibrilar adhesin named CS22. Our study aimed to evaluate the presence of AAF, AFP and CS22-related genes among 110 EAEC strains collected from feces of children with diarrhea. The presence of aggR (EAEC virulence regulator) and genes related to AAFs (aggA, aafA, agg3A, agg4A, agg5A and agg3/4C), AFP (afpA1 and afpR) and CS22 (cseA) was detected by PCR, and the adherence patterns were evaluated on HeLa cells. aggR-positive strains comprised 83.6% of the collection; among them, 80.4% carried at least one AAF-related gene and presented the AA pattern. aggA was the most frequent AAF-related gene (28.4% of aggR+ strains). cseA was detected among aggR+ (16.3%) and aggR- strains (22.2%); non-adherent strains or strains presenting AA pattern were observed in both groups. afpR and afpA1 were exclusively detected among aggR- strains (77.8%), most of which (71.4%) also presented AA pattern. Our results indicate that AAF- and AFP-related genes may contribute to identify EAEC strains, while the presence of cseA and its importance as an EAEC virulence factor and genotypic marker needs to be further evaluated.

2.
Virulence, v. 13, n. 1, p. 1423-1433, ago. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4482

RESUMO

Hybrid-pathogenic Escherichia coli represent an important group of strains associated with intestinal and extraintestinal infections. Recently, we described strain UPEC-46, a uropathogenic/enteroaggregative E. coli (UPEC/EAEC) strain presenting the aggregative adherence (AA) pattern on bladder and colorectal epithelial cells mediated by aggregate-forming pili (AFP). However, the role of AFP and other uninvestigated putative fimbriae operons in UPEC-46 pathogenesis remains unclear. Thus, this study evaluated the involvement of AFP and other adhesins in uropathogenicity and intestinal colonization using different in vitro and in vivo models. The strain UPEC-46 was able to adhere and invade intestinal and urinary cell lines. A library of transposon mutants also identified the involvement of type I fimbriae (TIF) in the adherence to HeLa cells, in addition to colorectal and bladder cell lines. The streptomycin-treated mouse in vivo model also showed an increased number of bacterial counts in the colon in the presence of AFP and TIF. In the mouse model of ascending urinary tract infection (UTI), AFP was more associated with kidney colonization, while TIF appears to mediate bladder colonization. Results observed in in vivo experiments were also confirmed by electron microscopy (EM) analyses. In summary, the in vitro and in vivo analyses show a synergistic role of AFP and TIF in the adherence and colonization of intestinal and urinary epithelia. Therefore, we propose that hybrid E. coli strains carrying AFP and TIF could potentially cause intestinal and urinary tract infections in the same patient.

3.
Microorganisms, v. 10, n. 6, 1174, jun. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4402

RESUMO

Pil-fimbriae is a type IV pili member, which is a remarkably versatile component with a wide variety of functions, including motility, attachment to different surfaces, electrical conductance, DNA acquisition, and secretion of a broad range of structurally distinct protein substrates. Despite the previous functional characterization of Pil, more studies are required to understand the regulation of Pil expression and production, since the exact mechanisms involved in these steps are still unknown. Therefore it is extremely important to have a protein with the correct secondary and tertiary structure that will enable an accurate characterization and a specific antisera generation. For this reason, the aim of this work was to generate potential tools for further investigations to comprehend the mechanisms involved in Pil regulation and its role in pathogenic E. coli infections with the obtaining of a precise native-like recombinant PilS and the corresponding antisera. The pilS gene was successfully cloned into an expression vector, and recombinant PilS (rPilS) was efficiently solubilized and purified by metal affinity chromatography. Protein characterization analyses indicated that rPilS presented native-like secondary and tertiary structures after the refolding process. The generated anti-rPilS sera efficiently recognized recombinant and native proteins from atypical enteropathogenic E. coli strains.

4.
Antibiotics, v. 11, p. 364, mar. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4359

RESUMO

Several natural products have been investigated for their bactericidal potential, among these, cinnamaldehyde. In this study, we aimed to evaluate the activity of cinnamaldehyde in the treatment of animals with sepsis induced by extraintestinal pathogenic E. coli. Initially, the E. coli F5 was incubated with cinnamaldehyde to evaluate the minimum inhibitory and minimum bactericidal concentration. Animal survival was monitored for five days, and a subset of mice were euthanized after 10 h to evaluate histological, hematological, and immunological parameters, as well as the presence of bacteria in the organs. On the one hand, inoculation of bacterium caused the death of 100% of the animals within 24 h after infection. On the other hand, cinnamaldehyde (60 mg/kg) was able to keep 40% of mice alive after infection. The treatment significantly reduced the levels of cytokines in serum and peritoneum and increased the production of cells in both bone marrow and spleen, as well as lymphocytes at the infection site. Cinnamaldehyde was able to reduce tissue damage by decreasing the deleterious effects for the organism and contributed to the control of the sepsis and survival of animals; therefore, it is a promising candidate for the development of new drugs.

5.
Front Immunol, v. 13, 844878, fev. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4264

RESUMO

Several strategies are used by Escherichia coli to evade the host innate immune system in the blood, such as the cleavage of complement system proteins by secreted proteases. Members of the Serine Proteases Autotransporters of Enterobacteriaceae (SPATE) family have been described as presenting proteolytic effects against complement proteins. Among the SPATE-encoding genes sat (secreted autotransporter toxin) has been detected in high frequencies among strains of E. coli isolated from bacteremia. Sat has been characterized for its cytotoxic action, but the possible immunomodulatory effects of Sat have not been investigated. Therefore, this study aimed to evaluate the proteolytic effects of Sat on complement proteins and the role in pathogenesis of BSI caused by extraintestinal E. coli (ExPEC). E. coli EC071 was selected as a Sat-producing ExPEC strain. Whole-genome sequencing showed that sat sequences of EC071 and uropathogenic E. coli CFT073 present 99% identity. EC071 was shown to be resistant to the bactericidal activity of normal human serum (NHS). Purified native Sat was used in proteolytic assays with proteins of the complement system and, except for C1q, all tested substrates were cleaved by Sat in a dose and time-dependent manner. Moreover, E. coli DH5α survived in NHS pre-incubated with Sat. EC071-derivative strains harboring sat knockout and in trans complementations producing either active or non-active Sat were tested in a murine sepsis model. Lethality was reduced by 50% when mice were inoculated with the sat mutant strain. The complemented strain producing active Sat partially restored the effect caused by the wild-type strain. The results presented in this study show that Sat presents immunomodulatory effects by cleaving several proteins of the three complement system pathways. Therefore, Sat plays an important role in the establishment of bloodstream infections and sepsis.

6.
Pathogens, v. 11, n. 2, 231, fev. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4232

RESUMO

The role of uropathogenic Escherichia coli (UPEC) in colonization and infection of female patients with anatomical and functional abnormalities of the urinary system is elusive. In this study, the phenotype, genotype and the phylogeny of UPEC strains isolated from the urine of pediatric female patients with cystitis of normal and abnormal urinary tract were determined. Multiplex PCR results demonstrated that 86% of the strains isolated from female patients with normal urinary tract (NUT), belonged to the phylo-groups B2 and D. Their prevalence decreased to 23% in strains isolated from patients with abnormal urinary tract (AUT). More of the isolates from AUT patients produced a biofilm on polystyrene and polyvinyl chloride (PVC), adhered to epithelial cells, and encoded pap and sfa genes than strains isolated from female patients with NUT. In contrast, a higher number of hemolysin-producing strains with serogroups associated with UPEC were isolated from patients with NUT. In summary, the results suggest that cystitis in female patients with NUT is associated with ExPEC, whereas cystitis in female patients with AUT is associated with pathogenic intestinal E. coli strains that have acquired the ability to colonize the bladder.

7.
Virulence, v. 12. n. 20, p. 3073-3093, dez. 2021
Artigo em Alemão | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4358

RESUMO

Enteroaggregative Escherichia coli (EAEC) comprises an important diarrheagenic pathotype, while uropathogenic E. coli (UPEC) is the most important agent of urinary tract infection (UTI). Recently, EAEC virulence factors have been detected in E. coli strains causing UTI, showing the importance of these hybrid-pathogenic strains. Previously, we detected an E. coli strain isolated from UTI (UPEC-46) presenting characteristics of EAEC, e.g., the aggregative adherence (AA) pattern and EAEC-associated genes (aatA, aap, and pet). In this current study, we analyzed the whole genomic sequence of UPEC-46 and characterized some phenotypic traits. The AA phenotype was observed in cell lineages of urinary and intestinal origin. The production of curli, cellulose, bacteriocins, and Pet toxin was detected. Additionally, UPEC-46 was not capable of forming biofilm using different culture media and human urine. The genome sequence analysis showed that this strain belongs to serotype O166:H12, ST10, and phylogroup A, harbors the tet, aadA, and dfrA/sul resistance genes, and is phylogenetically more related to EAEC strains isolated from human feces. UPEC-46 harbors three plasmids. Plasmid p46-1 (~135 kb) carries some EAEC marker genes and those encoding the aggregate-forming pili (AFP) and its regulator (afpR). A mutation in afpA (encoding the AFP major pilin) led to the loss of pilin production and assembly, and notably, a strongly reduced adhesion to epithelial cells. In summary, the genetic background and phenotypic traits analyzed suggest that UPEC-46 is a hybrid strain (UPEC/EAEC) and highlights the importance of AFP adhesin in the adherence to colorectal and bladder cell lines.

8.
Pathogens, v. 10, n. 4, 475, abr. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3694

RESUMO

Diarrheagenic Escherichia coli is the major bacterial etiological agent of severe diarrhea and a major concern of public health. These pathogens have acquired genetic characteristics from other pathotypes, leading to unusual and singular genetic combinations, known as hybrid strains and may be more virulent due to a set of virulence factors from more than one pathotype. One of the possible combinations is with extraintestinal E. coli (ExPEC), a leading cause of urinary tract infection, often lethal after entering the bloodstream and atypical enteropathogenic E. coli (aEPEC), responsible for death of thousands of people every year, mainly children under five years old. Here we report the draft genome of a strain originally classified as aEPEC (BA1250) isolated from feces of a child with acute diarrhea. Phylogenetic analysis indicates that BA1250 genome content is genetically closer to E. coli strains that cause extraintestinal infections, other than intestinal infections. A deeper analysis showed that in fact this is a hybrid strain, due to the presence of a set of genes typically characteristic of ExPEC. These genomic findings expand our knowledge about aEPEC heterogeneity allowing further studies concerning E. coli pathogenicity and may be a source for future comparative studies, virulence characteristics, and evolutionary biology.

9.
Proceedings ; 81(1): 146, 2020.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4365

RESUMO

Enteropathogenic Escherichia coli (EPEC) are important agents of acute diarrhea in children living in developing countries. A severe dysfunction of the intestinal epithelial barrier occurs during EPEC infection, leading to diarrhea and inflammation as consequences. EPEC main virulence factors include the adhesins intimin and bundle-forming pilus (BFP), as well as several effector proteins translocated to the enterocyte by the type-three secretion system. The initial interaction of EPEC with the host cell and the role of effector proteins in this process are well known. However, the role of the EPEC virulence factors in macrophage activation is not fully understood. Hence, we analyzed the ability of intimin and bundle-forming pilus (BfpA) to activate the innate response mediated by macrophages, where the production of the proinflammatory cytokines TNF-α, IL-1, IL-6 and IL-12, as well as the anti-inflammatory cytokine IL-10 and chemokine MCP-1, were evaluated. Our results showed that recombinant intimin and BfpA activate macrophages in a dose-dependent manner, and the stimulated cells produced TNF-α, IL-12, IL-6, IL-10 and MCP-1, but not IL-1β. No synergistic effect was observed in the production of pro-inflammatory cytokines by combining BfpA and intimin, although production of IL-10, an anti-inflammatory mediator, was potentiated at a higher dose. The effect observed was largely attributed to these proteins, as the treatment of proteins with polymyxin B did not alter the production of TNF-α. Thus, herein we showed that intimin and BfpA can activate the innate immune response, inducing the production of pro- and anti-inflammatory cytokines, as well as chemokines, playing additional role as inflammatory molecules in the early steps of EPEC infection.

10.
Front Cell Infect Microbiol, v. 10, 571088, dez. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3434

RESUMO

Diarrhea is one of the main causes of infant mortality worldwide, mainly in the developing world. Among the various etiologic agents, Escherichia albertii is emerging as an important human enteropathogen. E. albertii promote attaching and effacing (AE) lesions due to the presence of the locus of enterocyte effacement (LEE) that encodes a type three secretion system (T3SS), the afimbrial adhesin intimin and its translocated receptor, Tir, and several effector proteins. We previously showed that E. albertii strain 1551-2 invades several epithelial cell lineages by a process that is dependent on the intimin-Tir interaction. To understand the contribution of T3SS-dependent effectors present in E. albertii 1551-2 during the invasion process, we performed a genetic analysis of the LEE and non-LEE genes and evaluated the expression of the LEE operons in various stages of bacterial interaction with differentiated intestinal Caco-2 cells. The kinetics of the ability of the 1551-2 strain to colonize and form AE lesions was also investigated in epithelial HeLa cells. We showed that the LEE expression was constant during the early stages of infection but increased at least 4-fold during bacterial persistence in the intracellular compartment. An in silico analysis indicated the presence of a new tccP/espFU subtype, named tccP3. We found that the encoded protein colocalizes with Tir and polymerized F-actin during the infection process in vitro. Moreover, assays performed with Nck null cells demonstrated that the 1551-2 strain can trigger F-actin polymerization in an Nck-independent pathway, despite the fact that TccP3 is not required for this phenotype. Our study highlights the importance of the T3SS during the invasion process and for the maintenance of E. albertii 1551-2 inside the cells. In addition, this work may help to elucidate the versatility of the T3SS for AE pathogens, which are usually considered extracellular and rarely reach the intracellular environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA