Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Parasit Vectors ; 13(1): 55, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32041663

RESUMO

BACKGROUND: Nyssorhynchus darlingi (also known as Anopheles darlingi) is the primary malaria vector in the Amazon River Basin. In Brazil, analysis of single nucleotide polymorphisms (SNPs) previously detected three major population clusters, and a common garden experiment in a laboratory setting revealed significant population variation in life history traits. Increasing temperatures and local level variation can affect life history traits, i.e. adult longevity, that alter vectorial capacity with implications for malaria transmission in Ny. darlingi. METHODS: We investigated the population structure of Ny. darlingi from 7 localities across Brazil utilizing SNPs and compared them to a comprehensive Ny. darlingi catalog. To test the effects of local level variation on life history traits, we reared F1 progeny from the 7 localities at three constant temperatures (20, 24 and 28 °C), measuring key life history traits (larval development, food-starved adult lifespan, adult size and daily survival). RESULTS: Using nextRAD genotyping-by-sequencing, 93 of the field-collected Ny. darlingi were genotyped at 33,759 loci. Results revealed three populations (K = 3), congruent with major biomes (Amazonia, Cerrado and Mata Atlântica), with greater FST values between biomes than within. In the life history experiments, increasing temperature reduced larval development time, adult lifespan, and wing length in all localities. The variation of family responses for all traits within four localities of the Amazonia biome was significant (ANOVA, P < 0.05). Individual families within localities revealed a range of responses as temperature increased, for larval development, adult lifespan, wing length and survival time. CONCLUSIONS: SNP analysis of several Brazilian localities provided results in support of a previous study wherein populations of Ny. darlingi were clustered by three major Brazilian biomes. Our laboratory results of temperature effects demonstrated that population variation in life history traits of Ny. darlingi exists at the local level, supporting previous research demonstrating the high plasticity of this species. Understanding this plasticity and inherent variation between families of Ny. darlingi at the local level should be considered when deploying intervention strategies and may improve the likelihood of successful malaria elimination in South America.


Assuntos
Anopheles/fisiologia , Características de História de Vida , Fenótipo , Temperatura , Adaptação Fisiológica/fisiologia , Animais , Brasil , Ecossistema , Malária/transmissão , Mosquitos Vetores/fisiologia , Dinâmica Populacional
2.
PLoS One ; 14(11): e0225005, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31725789

RESUMO

The relationship between deforestation and malaria in Amazonian Brazil is complex, and a deeper understanding of this relationship is required to inform effective control measures in this region. Here, we are particularly interested in characterizing the impact of land use and land cover change on the genetics of the major regional vector of malaria, Nyssorhynchus darlingi (Root). We used nextera-tagmented, Reductively Amplified DNA (nextRAD) genotyping-by-sequencing to genotype 164 Ny. darlingi collected from 16 collection sites with divergent forest cover levels in seven municipalities in four municipality groups that span the state of Amazonas in northwestern Amazonian Brazil: São Gabriel da Cachoeira, Presidente Figueiredo, four municipalities in the area around Cruzeiro do Sul, and Lábrea. Using a dataset of 5,561 Single Nucleotide Polymorphisms (SNPs), we investigated the genetic structure of these Ny. darlingi populations with a combination of model- and non-model-based analyses. We identified weak to moderate genetic differentiation among the four municipality groups. There was no evidence for microgeographic genetic structure of Ny. darlingi among forest cover levels within the municipality groups, indicating that there may be gene flow across areas of these municipalities with different degrees of deforestation. Additionally, we conducted an environmental association analysis using two outlier detection methods to determine whether individual SNPs were associated with forest cover level without affecting overall population genetic structure. We identified 14 outlier SNPs, and investigated functions associated with their proximal genes, which could be further characterized in future studies.


Assuntos
Anopheles/genética , Vetores de Doenças , Florestas , Malária/epidemiologia , Malária/parasitologia , Animais , Brasil/epidemiologia , Análise Discriminante , Feminino , Ontologia Genética , Geografia , Polimorfismo de Nucleotídeo Único/genética , Análise de Componente Principal
3.
Parasit Vectors ; 12(1): 242, 2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31101131

RESUMO

BACKGROUND: In the Amazon Basin, Nyssorhynchus (Anopheles) darlingi is the most aggressive and effective malaria vector. In endemic areas, behavioral aspects of anopheline vectors such as host preference, biting time and resting location post blood meal have a key impact on malaria transmission dynamics and vector control interventions. Nyssorhynchus darlingi presents a range of feeding and resting behaviors throughout its broad distribution. METHODS: To investigate the genetic diversity related to biting behavior, we collected host-seeking Ny. darlingi in two settlement types in Acre, Brazil: Granada (~ 20-year-old, more established, better access by road, few malaria cases) and Remansinho (~ 8-year-old, active logging, poor road access, high numbers malaria cases). Mosquitoes were classified by the location of collection (indoors or outdoors) and time (dusk or dawn). RESULTS: Genome-wide SNPs, used to assess the degree of genetic divergence and population structure, identified non-random distributions of individuals in the PCA for both location and time analyses. Although genetic diversity related to behavior was confirmed by non-model-based analyses and FST values, model-based STRUCTURE detected considerable admixture of these populations. CONCLUSIONS: To our knowledge, this is the first study to detect genetic markers associated with biting behavior in Ny. darlingi. Additional ecological and genomic studies may help to understand the genetic basis of mosquito behavior and address appropriate surveillance and vector control.


Assuntos
Anopheles/genética , Mordeduras e Picadas , Comportamento Alimentar , Variação Genética , Animais , Brasil , Ecologia , Feminino , Genoma de Inseto , Genótipo , Geografia , Masculino , Controle de Mosquitos , Polimorfismo de Nucleotídeo Único
4.
R Soc Open Sci ; 5(5): 171900, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29892381

RESUMO

The subgenus Melanoconion of the mosquito genus Culex is taxonomically diverse and is widely distributed in the Neotropical Region, with 10 species occurring in the Nearctic Region. Species of this subgenus pose a taxonomical challenge because morphological identification is based largely on anatomical characters of the male genitalia. We addressed the monophyly of the Spissipes and Melanoconion Sections of the subgenus Melanoconion and some of the informal groups in each section. Our sample taxa included 97 specimens representing 43 species, from which we analysed fragments of two single-copy nuclear genes (CAD, HB) and one mitochondrial gene (COI). Phylogenetic relationships within the subgenus are presented based on results of maximum-likelihood and Bayesian analyses using a multi-locus matrix of DNA sequences. We show a molecular phylogeny of Melanoconion in which both sections were recovered as monophyletic groups. The monophyly of the Atratus and Pilosus groups was confirmed. Within each section, other monophyletic groups were recovered highlighting the potential need for future nomenclature rearrangement. The phylogenetic signal contained in nuclear genes, when analysed together, was more informative than each gene analysed separately, corroborating monophyly of Melanoconion relative to Culex (Culex) species included in the analyses, the Melanoconion and Spissipes Sections and some species groups. Our results provide new information for the classification of the subgenus and additional data that can be used to improve species identification when a more representative taxon sampling is available.

5.
Malar J ; 17(1): 86, 2018 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-29463241

RESUMO

BACKGROUND: In Loreto Department, Peru, a successful 2005-2010 malaria control programme (known as PAMAFRO) included massive distribution of long-lasting insecticidal nets (LLINs). Additional local distribution of LLINs occurred in individual villages, but not between 2012 and 2015. A 2011-2012 study of the primary regional malaria vector Anopheles darlingi detected a trend of increased exophagy compared with pre-PAMAFRO behaviour. For the present study, An. darlingi were collected in three villages in Loreto in 2013-2015 to test two hypotheses: (1) that between LLIN distributions, An. darlingi reverted to pre-intervention biting behaviour; and, (2) that there are separate sub-populations of An. darlingi in Loreto with distinct biting behaviour. RESULTS: In 2013-2015 An. darlingi were collected by human landing catch during the rainy and dry seasons in the villages of Lupuna and Cahuide. The abundance of An. darlingi varied substantially across years, villages and time periods, and there was a twofold decrease in the ratio of exophagic:endophagic An. darlingi over the study period. Unexpectedly, there was evidence of a rainy season population decline in An. darlingi. Plasmodium-infected An. darlingi were detected indoors and outdoors throughout the night, and the monthly An. darlingi human biting rate was correlated with the number of malaria cases. Using nextRAD genotyping-by-sequencing, 162 exophagic and endophagic An. darlingi collected at different times during the night were genotyped at 1021 loci. Based on model-based and non-model-based analyses, all genotyped An. darlingi belonged to a homogeneous population, with no evidence for genetic differentiation by biting location or time. CONCLUSIONS: This study identified a decreasing proportion of exophagic An. darlingi in two villages in the years between LLIN distributions. As there was no evidence for genetic differentiation between endophagic and exophagic An. darlingi, this shift in biting behaviour may be the result of behavioural plasticity in An. darlingi, which shifted towards increased exophagy due to repellence by insecticides used to impregnate LLINs and subsequently reverted to increased endophagy as the nets aged. This study highlights the need to target vector control interventions to the biting behaviour of local vectors, which, like malaria risk, shows high temporal and spatial heterogeneity.


Assuntos
Anopheles/fisiologia , Mordeduras e Picadas/epidemiologia , Mosquiteiros Tratados com Inseticida/estatística & dados numéricos , Mosquitos Vetores/fisiologia , Animais , Anopheles/genética , Comportamento Alimentar , Mosquitos Vetores/genética , Peru/epidemiologia
6.
Parasit Vectors ; 10(1): 76, 2017 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-28193289

RESUMO

BACKGROUND: In recent decades, throughout the Amazon Basin, landscape modification contributing to profound ecological change has proceeded at an unprecedented rate. Deforestation that accompanies human activities can significantly change aspects of anopheline biology, though this may be site-specific. Such local changes in anopheline biology could have a great impact on malaria transmission. The aim of this study was to investigate population genetics of the main malaria vector in Brazil, Anopheles darlingi, from a microgeographical perspective. METHODS: Microsatellites and ddRADseq-derived single nucleotide polymorphisms (SNPs) were used to assess levels of population genetic structuring among mosquito populations from two ecologically distinctive agricultural settlements (~60 km apart) and a population from a distant (~700 km) urban setting in the western Amazon region of Brazil. RESULTS: Significant microgeographical population differentiation was observed among Anopheles darlingi populations via both model- and non-model-based analysis only with the SNP dataset. Microsatellites detected moderate differentiation at the greatest distances, but were unable to differentiate populations from the two agricultural settlements. Both markers showed low polymorphism levels in the most human impacted sites. CONCLUSIONS: At a microgeographical scale, signatures of genetic heterogeneity and population divergence were evident in Anopheles darlingi, possibly related to local environmental anthropic modification. This divergence was observed only when using high coverage SNP markers.


Assuntos
Anopheles/classificação , Anopheles/crescimento & desenvolvimento , Variação Genética , Genética Populacional , Repetições de Microssatélites , Mosquitos Vetores , Polimorfismo de Nucleotídeo Único , Animais , Anopheles/genética , Brasil , Genótipo
7.
Acta Trop ; 164: 137-149, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27609637

RESUMO

The subgenus Melanoconion is the second largest subgenus within the genus Culex, with 160 described species. Several of the species are proven vectors of arboviruses, including West Nile virus, Venezuelan equine encephalitis virus complex and Eastern equine encephalomyelitis virus. Species of Melanoconion are well distributed from southern North America to most countries of South America and display the highest species diversity in tropical regions. Taxonomical identification within this group has been primarily based on morphological characters, with the male genitalia as the source of the most solid diagnostic features. The difficulty in reaching accurate species determinations when studying specimens of Culex (Melanoconion) has been extensively documented as a real limitation to expand knowledge of these insects. We tested the utility of the mitochondrial gene COI as a complementary tool in the taxonomy of Melanoconion. Using a data set of 120 COI sequences from Culex specimen captured in several localities in Brazil, the utility of COI barcodes for species delimitation is discussed through the evaluation of genetic divergences among specimens and the clustering patterns of species in three topologies obtained with Neighbor Joining, Maximum Likelihood and Bayesian phylogenetic inference. For all specimens included in this study a previous morphological examination was performed, and most of the taxonomical determinations were corroborated using the COI barcode. We generated COI sequences that belong to 48 species of Melanoconion, with a mean intraspecific K2P genetic divergence of 3%; and all interspecific divergence values higher than the intraspecific divergence values. This is the first comprehensive study of subgenus Melanoconion, with evidence of COI as a useful and accessible DNA barcode.


Assuntos
Culex/genética , Ciclo-Oxigenase 1/genética , Proteínas de Insetos/análise , Insetos Vetores/genética , Mitocôndrias/genética , Animais , Teorema de Bayes , Brasil , Análise por Conglomerados , Culex/classificação , Código de Barras de DNA Taxonômico , Insetos Vetores/classificação , Filogenia
8.
PLoS One ; 10(7): e0130773, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26172559

RESUMO

The major drivers of the extensive biodiversity of the Neotropics are proposed to be geological and tectonic events together with Pliocene and Pleistocene environmental and climatic change. Geographical barriers represented by the rivers Amazonas/Solimões, the Andes and the coastal mountain ranges in eastern Brazil have been hypothesized to lead to diversification within the primary malaria vector, Anopheles (Nyssorhynchus) darlingi Root, which primarily inhabits rainforest. To test this biogeographical hypothesis, we analyzed 786 single nucleotide polymorphisms (SNPs) in 12 populations of An. darlingi from across the complex Brazilian landscape. Both model-based (STRUCTURE) and non-model-based (Principal Components and Discriminant Analysis) analysis of population structure detected three major genetic clusters that correspond with newly described Neotropical biogeographical regions: 1) Atlantic Forest province (= southeast population); 2) Parana Forest province (= West Atlantic forest population, with one Chacoan population - SP); and 3) Brazilian dominion population (= Amazonian population with one Chacoan population - TO). Significant levels of pairwise genetic divergences were found among the three clusters, allele sharing among clusters was negligible, and geographical distance did not contribute to differentiation. We infer that the Atlantic forest coastal mountain range limited dispersal between the Atlantic Forest province and the Parana Forest province populations, and that the large, diagonal open vegetation region of the Chacoan dominion dramatically reduced dispersal between the Parana and Brazilian dominion populations. We hypothesize that the three genetic clusters may represent three putative species.


Assuntos
Anopheles/genética , Animais , Biodiversidade , Brasil , Análise por Conglomerados , DNA/genética , DNA/isolamento & purificação , Feminino , Técnicas de Genotipagem , Geografia , Masculino , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA