Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37277584

RESUMO

The use of natural zeolite clinoptilolite to reduce the leaching rate of potentially toxic elements such as Cd, Pb, and Mn in soil from mine tailings was studied. Soil from the surroundings of the mine El Bote in Zacatecas, Mexico, was analyzed, and the zeolite was characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, and nitrogen physisorption. An ammonium-exchange method for the zeolite was employed. Leaching experiments using packed columns with polluted soil and zeolite mixtures were carried out and the effect of the pH of the carrier solutions was studied. Incorporation of zeolite in the soil achieved a beneficial increase in pH, from 5.03 to 6.95. The concentration of Cd and Mn was reduced when zeolite was present in the column and the ammonium-modified zeolite with ammonia also enhanced the concentration reduction of metallic species in leachates in a range of 28 to 68%. The first-order model best fits the experimental data, suggesting that the leaching rate is controlled by concentration difference between the liquid and the soil matrix. These results demonstrate the potential for using natural zeolite clinoptilolite to reduce the leaching rate of potentially toxic elements in soil from mine tailings.

2.
Antibiotics (Basel) ; 12(3)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36978442

RESUMO

The present study centers on the synthesis of ultra-small silver nanoparticles (AgNPs) with antibacterial properties using citrus peel residues (orange, lemon, and grapefruit) as reducing and stabilizing agents, and on assessing their antibacterial activity against multidrug-resistant clinical Staphylococcus aureus. The synthesized AgNPs were analyzed by various techniques, including UV-Vis spectroscopy, SAED, TEM, XRD, FTIR, and Raman. The results demonstrate the formation of ultra-small, monodisperse, quasi-spherical AgNPs with an average particle size of 2.42 nm for AgNPs produced with mixed extracts. XRD analysis indicated that the AgNPs have a crystal size of 9.71 to 16.23 nm. The AgNPs exhibited potent inhibitory activity against resistant S. aureus, with a minimum inhibitory concentration (MIC) of 15.625 to 62.50 ppm. The findings suggest that the ultra-small nanometer size of the AgNPs could be attributed to the synthesis method that employs ambient conditions and the presence of polyphenolic compounds from citrus peel. Consequently, AgNPs obtained through sustainable green synthesis hold significant potential in combating clinical multi-resistant bacterial strains that are challenging to treat and eradicate. This approach also contributes to the revaluation of citrus residues in the region, which is an ongoing environmental issue today.

3.
Artigo em Inglês | MEDLINE | ID: mdl-32671033

RESUMO

Due to the recent emergence of multi-drug resistant strains, the development of novel antimicrobial agents has become a critical issue. The use of micronutrient transition metals is a promising approach to overcome this problem since these compounds exhibit significant toxicity at low concentrations in prokaryotic cells. In this work, we demonstrate that at concentrations lower than their minimal inhibitory concentrations and in combination with different antibiotics, it is possible to mitigate the barriers to employ metallic micronutrients as therapeutic agents. Here, we show that when administered as a combinatorial treatment, Cu2+, Zn2+, Co2+, Cd2+, and Ni2+ increase susceptibility of Escherichia coli and Staphylococcus aureus to ampicillin and kanamycin. Furthermore, ampicillin-resistant E. coli is re-sensitized to ampicillin when the ampicillin is administered in combination with Cu2+, Cd2+, or Ni2. Similarly, Cu2+, Zn2+, or Cd2+ re-sensitize kanamycin-resistant E. coli and S. aureus to kanamycin when administered in a combinatorial treatment with those transition metals. Here, we demonstrate that for both susceptible and resistant bacteria, transition-metal micronutrients, and antibiotics interact synergistically in combinatorial treatments and exhibit increased effects when compared to the treatment with the antibiotic alone. Moreover, in vitro and in vivo assays, using a murine topical infection model, showed no toxicological effects of either treatment at the administered concentrations. Lastly, we show that combinatorial treatments can clear a murine topical infection caused by an antibiotic-resistant strain. Altogether, these results suggest that antibiotic-metallic micronutrient combinatorial treatments will play an important role in future developments of antimicrobial agents and treatments against infections caused by both susceptible and resistant strains.

4.
Biochem Res Int ; 2016: 5781579, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27042354

RESUMO

The Ginkgo biloba extract (GbE) is a commercial product used as a nutraceutic herbal remedy in Europe and US. It contains 27% of the polyphenols isorhamnetin, kaempferol, and quercetin, as antioxidants. We used male adult Wistar rats (200-300 g), divided into four groups: control group (treated with 5.0 mg/kg of sodium chloride, intravenous), titanium dioxide nanoparticles (TiO2-NPs) group (5.0 mg/kg, intravenous), GbE group (10 mg/kg, intraperitoneal), and GbE + TiO2-NPs group (treated 24 h before with 10 mg/kg of GbE, intraperitoneal), followed, 24 h later, by 5.0 mg/kg of TiO2-NPs intravenously. The statistical analysis was performed using Student's t-test for grouped data with ANOVA posttest. The GbE protected renal cells against the effects of TiO2-NPs because it reversed the increased activity of γ-glutamyltranspeptidase and the enzymatic activity of dipeptidylaminopeptidase IV at all times tested (0-5, 5-24, 24-48, and 48-72 h). Also it reversed the glucosuria, hypernatriuria, and urine osmolarity at three times tested (5-24, 24-48, and 48-72). Thus, we conclude that GbE has a beneficial activity in the cytoplasmic membranes of brush border cells on the renal tubules, against the adverse effects that can be produced by some xenobiotics in this case the TiO2-NPs, in experimental rats.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA