Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Cancer ; 24(1): 853, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39026155

RESUMO

BACKGROUND: Metformin, a widely prescribed antidiabetic drug, has shown several promising effects for cancer treatment. These effects have been shown to be mediated by dual modulation of the AMPK-mTORC1 axis, where AMPK acts upstream of mTORC1 to decrease its activity. Nevertheless, alternative pathways have been recently discovered suggesting that metformin can act through of different targets regulation. METHODS: We performed a transcriptome screening analysis using HeLa xenograft tumors generated in NOD-SCID mice treated with or without metformin to examine genes regulated by metformin. Western Blot analysis, Immunohistochemical staining, and RT-qPCR were used to confirm alterations in gene expression. The TNMplot and GEPIA2 platform were used for in silico analysis of genes found up-regulated by metformin, in cervical cancer patients. We performed an AMPK knock-down using AMPK-targeted siRNAs and mTOR inhibition with rapamycin to investigate the molecular mechanisms underlying the effect of metformin in cervical cancer cell lines. RESULTS: We shown that metformin decreases tumor growth and increased the expression of a group of antitumoral genes involved in DNA-binding transcription activator activity, hormonal response, and Dcp1-Dcp2 mRNA-decapping complex. We demonstrated that ZFP36 could act as a new molecular target increased by metformin. mTORC1 inhibition using rapamycin induces ZFP36 expression, which could suggest that metformin increases ZFP36 expression and requires mTORC1 inhibition for such effect. Surprisingly, in HeLa cells AMPK inhibition did not affect ZFP36 expression, suggesting that additional signal transducers related to suppressing mTORC1 activity, could be involved. CONCLUSIONS: These results highlight the importance of ZFP36 activation in response to metformin treatment involving mTORC1 inhibition.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina , Metformina , Neoplasias do Colo do Útero , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Metformina/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/genética , Feminino , Animais , Camundongos , Células HeLa , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos SCID , Camundongos Endogâmicos NOD , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia
2.
PLoS One ; 19(6): e0293688, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38843139

RESUMO

It has been documented that variations in glycosylation on glycoprotein hormones, confer distinctly different biological features to the corresponding glycoforms when multiple in vitro biochemical readings are analyzed. We here applied next generation RNA sequencing to explore changes in the transcriptome of rat granulosa cells exposed for 0, 6, and 12 h to 100 ng/ml of four highly purified follicle-stimulating hormone (FSH) glycoforms, each exhibiting different glycosylation patterns: a. human pituitary FSH18/21 (hypo-glycosylated); b. human pituitary FSH24 (fully glycosylated); c. Equine FSH (eqFSH) (hypo-glycosylated); and d. Chinese-hamster ovary cell-derived human recombinant FSH (recFSH) (fully-glycosylated). Total RNA from triplicate incubations was prepared from FSH glycoform-exposed cultured granulosa cells obtained from DES-pretreated immature female rats, and RNA libraries were sequenced in a HighSeq 2500 sequencer (2 x 125 bp paired-end format, 10-15 x 106 reads/sample). The computational workflow focused on investigating differences among the four FSH glycoforms at three levels: gene expression, enriched biological processes, and perturbed pathways. Among the top 200 differentially expressed genes, only 4 (0.6%) were shared by all 4 glycoforms at 6 h, whereas 118 genes (40%) were shared at 12 h. Follicle-stimulating hormone glycocoforms stimulated different patterns of exclusive and associated up regulated biological processes in a glycoform and time-dependent fashion with more shared biological processes after 12 h of exposure and fewer treatment-specific ones, except for recFSH, which exhibited stronger responses with more specifically associated processes at this time. Similar results were found for down-regulated processes, with a greater number of processes at 6 h or 12 h, depending on the particular glycoform. In general, there were fewer downregulated than upregulated processes at both 6 h and 12 h, with FSH18/21 exhibiting the largest number of down-regulated associated processes at 6 h while eqFSH exhibited the greatest number at 12 h. Signaling cascades, largely linked to cAMP-PKA, MAPK, and PI3/AKT pathways were detected as differentially activated by the glycoforms, with each glycoform exhibiting its own molecular signature. These data extend previous observations demonstrating glycosylation-dependent distinctly different regulation of gene expression and intracellular signaling pathways triggered by FSH in granulosa cells. The results also suggest the importance of individual FSH glycoform glycosylation for the conformation of the ligand-receptor complex and induced signalling pathways.


Assuntos
Hormônio Foliculoestimulante , Células da Granulosa , Transcriptoma , Animais , Feminino , Células da Granulosa/metabolismo , Células da Granulosa/efeitos dos fármacos , Hormônio Foliculoestimulante/farmacologia , Hormônio Foliculoestimulante/metabolismo , Ratos , Glicosilação , Transcriptoma/efeitos dos fármacos , Humanos , Células Cultivadas , RNA-Seq/métodos , Células CHO , Cricetulus
3.
Int J Mol Sci ; 24(24)2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38139393

RESUMO

Breast cancer encompasses a diverse array of subtypes, each exhibiting distinct clinical characteristics and treatment responses. Unraveling the underlying regulatory mechanisms that govern gene expression patterns in these subtypes is essential for advancing our understanding of breast cancer biology. Gene co-expression networks (GCNs) help us identify groups of genes that work in coordination. Previous research has revealed a marked reduction in the interaction of genes located on different chromosomes within GCNs for breast cancer, as well as for lung, kidney, and hematopoietic cancers. However, the reasons behind why genes on the same chromosome often co-express remain unclear. In this study, we investigate the role of transcription factors in shaping gene co-expression networks within the four main breast cancer subtypes: Luminal A, Luminal B, HER2+, and Basal, along with normal breast tissue. We identify communities within each GCN and calculate the transcription factors that may regulate these communities, comparing the results across different phenotypes. Our findings indicate that, in general, regulatory behavior is to a large extent similar among breast cancer molecular subtypes and even in healthy networks. This suggests that transcription factor motif usage does not fully determine long-range co-expression patterns. Specific transcription factor motifs, such as CCGGAAG, appear frequently across all phenotypes, even involving multiple highly connected transcription factors. Additionally, certain transcription factors exhibit unique actions in specific subtypes but with limited influence. Our research demonstrates that the loss of inter-chromosomal co-expression is not solely attributable to transcription factor regulation. Although the exact mechanism responsible for this phenomenon remains elusive, this work contributes to a better understanding of gene expression regulatory programs in breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Fatores de Transcrição/genética , Mama , Cromossomos , Regulação Neoplásica da Expressão Gênica
4.
Sci Rep ; 13(1): 19837, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37963971

RESUMO

Hematopoietic cancers (HCs) are a heterogeneous group of malignancies that affect blood, bone marrow and lymphatic system. Here, by analyzing 1960 RNA-Seq samples from three independent datasets, we explored the co-expression landscape in HCs, by inferring gene co-expression networks (GCNs) with four cancer phenotypes (B and T-cell acute leukemia -BALL, TALL-, acute myeloid leukemia -AML-, and multiple myeloma -MM-) as well as non-cancer bone marrow. We characterized their structure (topological features) and function (enrichment analyses). We found that, as in other types of cancer, the highest co-expression interactions are intra-chromosomal, which is not the case for control GCNs. We also detected a highly co-expressed group of overexpressed pseudogenes in HC networks. The four GCNs present only a small fraction of common interactions, related to canonical functions, like immune response or erythrocyte differentiation. With this approach, we were able to reveal cancer-specific features useful for detection of disease manifestations.


Assuntos
Neoplasias Hematológicas , Leucemia Mieloide Aguda , Leucemia-Linfoma de Células T do Adulto , Humanos , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patologia , Medula Óssea/patologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia
5.
bioRxiv ; 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37905087

RESUMO

It has been documented that variations in glycosylation on glycoprotein hormones, confer distinctly different biological features to the corresponding glycoforms when multiple in vitro biochemical readings are analyzed. We here applied next generation RNA sequencing to explore changes in the transcriptome of rat granulosa cells exposed for 0, 6, and 12 h to 100 ng/ml of four highly purified follicle-stimulating hormone (FSH) glycoforms, each exhibiting different glycosylation patterns: human pituitary FSH18/21 and equine FSH (eqFSH) (hypo-glycosylated), and human FSH24 and chinese-hamster ovary cell-derived human recombinant FSH (recFSH) (fully-glycosylated). Total RNA from triplicate incubations was prepared from FSH glycoform-exposed cultured granulosa cells obtained from DES-pretreated immature female rats, and RNA libraries were sequenced in a HighSeq 2500 sequencer (2 × 125 bp paired-end format, 10-15 × 106 reads/sample). The computational workflow focused on investigating differences among the four FSH glycoforms at three levels: gene expression, enriched biological processes, and perturbed pathways. Among the top 200 differentially expressed genes, only 4 (0.6%) were shared by all 4 glycoforms at 6 h, whereas 118 genes (40%) were shared at 12 h. Follicle-stimulating hormone glycocoforms stimulated different patterns of exclusive and associated up regulated biological processes in a glycoform and time-dependent fashion with more shared biological processes after 12 h of exposure and fewer treatment-specific ones, except for recFSH, which exhibited stronger responses with more specifically associated processes at this time. Similar results were found for down-regulated processes, with a greater number of processes at 6 h or 12 h, depending on the particular glycoform. In general, there were fewer downregulated than upregulated processes at both 6 h and 12 h, with FSH18/21 exhibiting the largest number of down-regulated associated processes at 6 h while eqFSH exhibited the greatest number at 12 h. Signaling cascades, largely linked to cAMP-PKA, MAPK, and PI3/AKT pathways were detected as differentially activated by the glycoforms, with each glycoform exhibiting its own molecular signature. These data extend previous observations demonstrating glycosylation-dependent differential regulation of gene expression and intracellular signaling pathways triggered by FSH in granulosa cells. The results also suggest the importance of individual FSH glycoform glycosylation for the conformation of the ligand-receptor complex and induced signalling pathways.

6.
Front Genet ; 14: 1225158, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37693315

RESUMO

Renal carcinomas are a group of malignant tumors often originating in the cells lining the small tubes in the kidney responsible for filtering waste from the blood and urine production. Kidney tumors arise from the uncontrolled growth of cells in the kidneys and are responsible for a large share of global cancer-related morbidity and mortality. Understanding the molecular mechanisms driving renal carcinoma progression results crucial for the development of targeted therapies leading to an improvement of patient outcomes. Epigenetic mechanisms such as DNA methylation are known factors underlying the development of several cancer types. There is solid experimental evidence of relevant biological functions modulated by methylation-related genes, associated with the progression of different carcinomas. Those mechanisms can often be associated to different epigenetic marks, such as DNA methylation sites or chromatin conformation patterns. Currently, there is no definitive method to establish clear relations between genetic and epigenetic factors that influence the progression of cancer. Here, we developed a data-driven method to find methylation-related genes, so we could find relevant bonds between gene co-expression and methylation-wide-genome regulation patterns able to drive biological processes during the progression of clear cell renal carcinoma (ccRC). With this approach, we found out genes such as ITK oncogene that appear hypomethylated during all four stages of ccRC progression and are strongly involved in immune response functions. Also, we found out relevant tumor suppressor genes such as RAB25 hypermethylated, thus potentially avoiding repressed functions in the AKT signaling pathway during the evolution of ccRC. Our results have relevant implications to further understand some epigenetic-genetic-affected roles underlying the progression of renal cancer.

7.
Cancers (Basel) ; 15(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37627052

RESUMO

Pseudogenes are duplicates of protein-coding genes that have accumulated multiple detrimental alterations, rendering them unable to produce the protein they encode. Initially disregarded as "junk DNA" due to their perceived lack of functionality, research on their biological roles has been hindered by this assumption. Nevertheless, recent focus has shifted towards these molecules due to their abnormal expression in cancer phenotypes. In this review, our objective is to provide a thorough overview of the current understanding of pseudogene formation, the mechanisms governing their expression, and the roles they may play in promoting tumorigenesis.

8.
Front Genet ; 14: 1141011, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37274786

RESUMO

Gene co-expression networks are a useful tool in the study of interactions that have allowed the visualization and quantification of diverse phenomena, including the loss of co-expression over long distances in cancerous samples. This characteristic, which could be considered fundamental to cancer, has been widely reported in various types of tumors. Since copy number variations (CNVs) have previously been identified as causing multiple genetic diseases, and gene expression is linked to them, they have often been mentioned as a probable cause of loss of co-expression in cancerous networks. In order to carry out a comparative study of the validity of this statement, we took 477 protein-coding genes from chromosome 8, and the CNVs of 101 genes, also protein-coding, belonging to the 8q24.3 region, a cytoband that is particularly active in the appearance of breast cancer. We created CNVS-conditioned co-expression networks of each of the 101 genes in the 8q24.3 region using conditional mutual information. The study was carried out using the four molecular subtypes of breast cancer (Luminal A, Luminal B, Her2, and Basal), as well as a case corresponding to healthy samples. We observed that in all cancer cases, the measurement of the Kolmogorov-Smirnov statistic shows that there are no significant differences between one and other values of the CNVs for any case. Furthermore, the co-expression interactions are stronger in all cancer subtypes than in the control networks. However, the control network presents a homogeneously distributed set of co-expression interactions, while for cancer networks, the highest interactions are more confined to specific cytobands, in particular 8q24.3 and 8p21.3. With this approach, we demonstrate that despite copy number alterations in the 8q24 region being a common trait in breast cancer, the loss of long-distance co-expression in breast cancer is not determined by CNVs.

10.
Front Oncol ; 12: 934711, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35936681

RESUMO

Clear cell renal carcinoma (ccRC) comprises a set of heterogeneous, fast-progressing pathologies with poor prognosis. Analyzing ccRC progression in terms of modifications at the molecular level may provide us with a broader understanding of the disease, paving the way for improved diagnostics and therapeutics. The role of micro-RNAs (miRs) in cancer by targeting both oncogenes and tumor suppressor genes is widely known. Despite this knowledge, the role of specific miRs and their targets in the progression of ccRC is still unknown. To evaluate the action of miRs and their target genes during ccRC progression, here we implemented a three-step method for constructing miR-gene co-expression networks for each progression stage of ccRC as well as for adjacent-normal renal tissue (NT). In the first step, we inferred all miR-gene co-expression interactions for each progression stage of ccRC and for NT. Afterwards, we filtered the whole miR-gene networks by differential gene and miR expression between successive stages: stage I with non-tumor, stage II with stage I, and so on. Finally, all miR-gene interactions whose relationships were inversely proportional (overexpressed miR and underexpressed genes and vice versa) were kept and removed otherwise. We found that miR-217 is differentially expressed in all contrasts; however, its targets were different depending on the ccRC stage. Furthermore, the target genes of miR-217 have a known role in cancer progression-for instance, in stage II network, GALNTL6 is overexpressed, and it is related to cell signaling, survival, and proliferation. In the stage III network, WNK2, a widely known tumor suppressor, is underexpressed. For the stage IV network, IGF2BP2, a post-transcriptional regulator of MYC and PTEN, is overexpressed. This data-driven network approach has allowed us to discover miRs that have different targets through ccRC progression, thus providing a method for searching possible stage-dependent therapeutic targets in this and other types of cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA