Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Environ Toxicol Chem ; 43(2): 405-417, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38018734

RESUMO

Pesticides employed worldwide for crop protection easily reach aquatic systems, which act as the main reservoirs, and become a risk factor for aquatic fauna. Fipronil is a broad-spectrum insecticide acting on the insect nervous system; however, other effects and systems unrelated to this mechanism could be affected in non-target organisms. Thus, the present study aimed to assess the impact of fipronil on the suborganismal response (gene expression and enzymatic activity) of Chironomus riparius larvae as a model organism in ecotoxicology. To this end, short-term toxicity tests were carried out with fourth-instar larvae exposed to 0.001, 0.01, and 0.1 µg L-1 of fipronil for 24 and 96 h. Messenger RNA levels of 42 genes related to diverse metabolic pathways were analyzed by real-time polymerase chain reaction, complemented with catalase (CAT), glutathione S-transferase (GST), and acetylcholinesterase (AChE) activities. Few effects were observed at 24 h; however, after longer exposure (96 h), genes involved in the endocrine, detoxification, stress, and immune response pathways were altered. Moreover, fipronil at 96 h increased CAT and GST activity at 0.01 µg L-1 and AChE at the highest concentrations. The results demonstrate that even low environmentally relevant fipronil concentrations can modulate the molecular response of several cellular pathways in C. riparius after short-term exposure. These results bring new information about the underlying response of fipronil and its mode of action on a key aquatic invertebrate. Despite no effects on mortality, strong modulation at the suborganismal level emphasizes the advantage of biomarkers as early damage responses and the harmful impact of this pesticide on freshwater organisms. Environ Toxicol Chem 2024;43:405-417. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Chironomidae , Inseticidas , Pirazóis , Poluentes Químicos da Água , Animais , Inseticidas/toxicidade , Chironomidae/genética , Acetilcolinesterase/metabolismo , Larva/metabolismo , Poluentes Químicos da Água/toxicidade
2.
Environ Sci Pollut Res Int ; 31(3): 4067-4079, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38097830

RESUMO

Brazil is a major producer of sugarcane bioethanol, which has raised concerns about its environmental impact. The industrial process for obtaining ethanol generates a by-product with a high pollution potential called vinasse. If vinasse reaches watercourses, it may affect the biological communities, such as the aquatic macroinvertebrates, which include species sensitive to environmental contamination. Thus, this study evaluated the ecotoxicological effects of sugarcane vinasse on tropical benthic macroinvertebrates (Allonais inaequalis, Chironomus sancticaroli, Strandesia trispinosa, and Hyalella meinerti). The study was divided into three phases. First, acute toxicity tests were carried out with the four species. The species A. inaequalis (average LC50 = 0.460% confidence interval, CI 0.380-0.540%) was more sensitive to vinasse than C. sancticaroli (LC50 0.721%, CI 0.565-0.878%), H. meinerti (EC50 0.781%, CI 0.637-0.925%), and S. trispinosa (EC50 1.283%, CI 1.045-1.522%). In the second phase, the consequences of chronic exposure to vinasse were assessed in the two more sensitive species. Impairments in reproduction and population growth rates for A. inaequalis and on the development, metamorphosis, and body growth of C. sancticaroli larvae occurred. Finally, the bioaccumulation of metals after chronic exposure was determined in the third phase. Vinasse provoked decreases in the body residue of the essential metals Zn and Mn and the accumulation of Cd, Pb, and Cr with the potential for biomagnification throughout the food webs. Low concentrations of vinasse (below 1%) provoked lethal and sublethal effects on benthic organisms, with several cascade effects on aquatic environments, given the ecological importance of this group in freshwater and terrestrial ecosystems.


Assuntos
Saccharum , Bioacumulação , Saccharum/química , Ecossistema , Poluição Ambiental , Metais
3.
Bull Environ Contam Toxicol ; 112(1): 3, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017221

RESUMO

Parabens, a group of preservatives with a wide industrial range, threaten human and aquatic biota health due to their toxicity and endocrine disruption potential. As conventional wastewater treatment may not be enough to keep natural environments safe, toxicity studies are useful tools for supporting ecological risk assessments. Here, we focused on assessing ethylparaben's, one of the most common kinds of paraben, toxicity in the cladocerans Daphnia similis and Ceriodaphnia silvestrii. The EC50 sensitivity for D. similis and C. silvestrii was 24 (21-28) mg L- 1 and 25 (19-33) mg L- 1, respectively. Inhibition of reproduction and late development of females were observed in C. silvestrii exposed to 8 mg L- 1. Furthermore, species sensitivity distribution was used to assess ecological risk, and ethylparaben demonstrated low potential risk for aquatic biota.


Assuntos
Cladocera , Poluentes Químicos da Água , Animais , Feminino , Humanos , Daphnia , Parabenos/toxicidade , Reprodução , Poluentes Químicos da Água/toxicidade
4.
Bull Environ Contam Toxicol ; 110(6): 106, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37284985

RESUMO

In this study we evaluated the acute (immobility/mortality) and chronic (survival and reproduction) effects of the drugs caffeine, diclofenac sodium salt, ketoprofen, paracetamol and salicylic acid on the cladoceran Ceriodaphnia silvestrii. The environmental risks of these substances for tropical freshwaters were estimated from the risk quotient MEC/PNEC. Sensitivity in acute exposures varied up on the drug as follows: salicylic acid (EC50 = 69.15 mg L- 1) < caffeine (EC50 = 45.94 mg L- 1) < paracetamol (EC50 = 34.49 mg L- 1) < ketoprofen (EC50 = 24.84 mg L- 1) < diclofenac sodium salt (EC50 = 14.59 mg L- 1). Chronic toxicity data showed negative effects of the drugs on reproduction. Paracetamol and salicylic acid caused reduction in fecundity in concentrations starting from 10 mg L- 1 and 35 mg L- 1, respectively. Ketoprofen caused total inhibition at 5 mg L- 1. MEC/PNEC values were relatively low for all drugs. The risk was estimated as low or insignificant, except for caffeine, whose MEC/PNEC value was greater than 1 (moderate risk).


Assuntos
Cladocera , Cetoprofeno , Poluentes Químicos da Água , Animais , Acetaminofen , Diclofenaco , Cafeína , Cetoprofeno/farmacologia , Água Doce , Medição de Risco , Ácido Salicílico/farmacologia , Poluentes Químicos da Água/toxicidade
5.
Environ Sci Pollut Res Int ; 30(33): 80335-80348, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37294488

RESUMO

The magnitude of copepods' responses to pesticides, individually and in mixture, is little understood. The aims of this study were to evaluate: (i) the effects of the pesticides fipronil and 2,4-D, individually and in mixture, on the freshwater copepod Notodiaptomus iheringi; and (ii) the survival and the feeding rate of copepods after the exposure. Acute toxicity tests using the commercial formulations of fipronil and 2,4-D, individually and in mixture, were performed. The LC10-48h, LC20-48h, and LC50-48h of fipronil to N. iheringi were 2.38 ± 0.48, 3.08 ± 1.14, and 4.97 ± 3.30 µg L-1, respectively. For 2,4-D the LC10-48h, LC20-48h, and LC50-48h were 371.18 ± 29.20, 406.93 ± 53.77, and 478.24 ± 107.77 mg L-1, respectively. Morphological damages on the copepods exposed to pesticides were observed at all concentrations. Fungal filaments covering dead organisms were presented at the treatment highest concentration (R5:7.43 ± 2.78 µg L-1 fipronil). The mixture of the pesticides presented synergistic effects on the mortality of N. iheringi. Post-exposure tests showed no difference between the treatments and the control on the mortality and on the feeding rate for 4 h. However, since delayed toxicity of pesticides can occur, longer post-exposure tests using N. iheringi should be tested. N. iheringi is a key species in the aquatic Brazilian ecosystem and showed sensitivity to fipronil and 2,4-D; thus, more studies with this species assessing other responses are recommended.


Assuntos
Copépodes , Praguicidas , Poluentes Químicos da Água , Animais , Ecossistema , Poluentes Químicos da Água/toxicidade , Praguicidas/toxicidade , Água Doce , Ácido 2,4-Diclorofenoxiacético/toxicidade
6.
J Environ Sci Health B ; 58(3): 262-272, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36799483

RESUMO

Sugarcane expansion has been associated with soil contamination by agrochemicals. Pesticides can affect plant growth, and their mixture might have potentiated effects on exposed species. This research aimed to evaluate the influence of fipronil on the phytotoxicity of 2,4-D on three green manure plant species: Canavalia ensiformis, Dolichos lablab, and Lupinus albus. Plants were exposed (for 21 days, at 25 °C) to a control soil and five concentrations of each pesticide and their combinations (36 treatments, considering a full-factorial approach). Effect concentrations of 50% growth inhibition (EC50) were estimated. No phytotoxicity effects were identified when plants were exposed to different fipronil concentrations (up to 0.12 mg kg-1). All species exposed to 2,4-D showed a decrease in shoot and root length and fresh/dry biomass. L. albus and D. lablab roots showed the highest sensitivity when exposed to 2,4-D among the endpoints (EC50 = 0.02 and 0.05 mg kg-1, respectively), while C. ensiformis roots were the most tolerant (EC50 = 0.98 mg kg-1). However, the interference of fipronil on the toxicity of 2,4-D was not detected in different mixture proportions, indicating no interaction between pesticides. Residues of 2,4-D might also impair other crops' growth, compromise productivity, and limit phytotechnologies for soil recovery.


Assuntos
Praguicidas , Poluentes do Solo , Esterco , Praguicidas/toxicidade , Pirazóis/toxicidade , Solo/química , Poluentes do Solo/toxicidade , Poluentes do Solo/análise
7.
Environ Sci Pollut Res Int ; 30(8): 21010-21024, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36264462

RESUMO

This study evaluated the effects of environmental contamination caused by pasture intensification and pasture-sugarcane conversion on oxidative stress, biotransformation, esterase enzymes, and development of Scinax fuscovarious and Physalaemus nattereri. Tadpoles were exposed in mesocosms allocated in three treatments: (1) untreated extensive pasture (EP); (2) intensive-pasture conversion (IP) (2,4-D herbicide + fertilizers); and (3) pasture-sugarcane conversion (SC) (fipronil + 2,4-D + fertilizers). After 7 days of exposure, IP reduced catalase (CAT) and increased malondialdehyde (MDA) levels in P. nattereri, while this treatment decreased glucose-6-phosphate dehydrogenase (G6PDH) and CAT activities in S. fuscovarious. SC decreased CAT, G6PDH, and glutathione S-transferase (GST) activities in P. nattereri. In S. fuscovarius, SC reduced G6PDH, acetylcholinesterase (AChE), and carboxylesterase (CbE) activities. MDA was raised in both tadpole species exposed to SC, evidencing oxidative stress. Integrated biomarker responses showed higher scores in both species exposed to SC. Our results warn that management practices currently applied to sugarcane cultivation in Brazil can negatively impact the functional responses of amphibians at natural systems.


Assuntos
Saccharum , Poluentes Químicos da Água , Animais , Larva , Acetilcolinesterase/metabolismo , Saccharum/metabolismo , Brasil , Fertilizantes , Catalase/metabolismo , Anuros , Ácido 2,4-Diclorofenoxiacético/metabolismo , Glutationa Transferase/metabolismo , Poluentes Químicos da Água/metabolismo
8.
Environ Sci Pollut Res Int ; 29(59): 89426-89437, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35852750

RESUMO

Land use changes threaten the maintenance of water quality and challenge the management of tropical reservoirs. In particular, eutrophication alters several ecosystem functions and services, compromising multiple uses of water. For example, in the Lajeado Reservoir (Araraquara, São Paulo, Brazil), aquatic macrophytes rapidly spread and occupied more than 90% of the system's surface area (from 2016 to 2019). In such a scenario, this research aimed to evaluate the eutrophication causes and impacts to provide technical and scientific support to public agencies and propose remediation alternatives. First, a diagnosis of the study area was performed, using available data on land use, water quality, and climate (between 2010 and 2018). Second, water and sediment samples were collected for physical, chemical, and ecotoxicological analyses. The Ecological Risk Assessment consisted of a triad of Lines of Evidence, including physical-chemical, chemical, and ecotoxicological results. The expansion of agricultural activities (e.g., sugarcane cultivation) and diffuse pollution were highlighted among possible causes, and water quality was affected by increases in the concentration of nutrients (e.g., nitrogen and phosphorus), metals (e.g., iron), and emerging contaminants (e.g., pesticides and caffeine). As a result, the Lajeado Reservoir presented a high ecological risk, and alternatives for macrophyte removal are needed. This research involved several stakeholders (i.e., community, government agencies, and universities) who participated more effectively in environmental monitoring and recovery.


Assuntos
Ecossistema , Poluentes Químicos da Água , Brasil , Eutrofização , Monitoramento Ambiental , Fósforo/análise , Poluentes Químicos da Água/análise
9.
Arch Environ Contam Toxicol ; 82(3): 330-340, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35138446

RESUMO

Sugarcane crops are dependent on chemicals for maintaining plantations. Therefore, environmental consequences concern adjacent areas that can be affected by contaminants in common use, including pesticides and vinasse (i.e., a by-product from the ethanol industry). This study aimed to evaluate phytotoxicity through two plant bioassays with water from mesocosms contaminated with the herbicide 2,4-D (447.0 µg L-1), the insecticide fipronil (63.5 µg L-1), and sugarcane vinasse (1.3%). First, the germination test (4 d) with Eruca sativa L. assessed water samples collected three times after the contamination (2 h, 14 d, and 30 d), considering germination, shoot, and root growth. The results from this bioassay indicated higher phytotoxicity for 2,4-D as it fully inhibited the shoot and root growth even in low concentrations (0.2 µg L-1). However, no significant effect was reported for fipronil and vinasse. Also, the 2,4-D effects drastically decreased due to an expressive concentration reduction (99.4% after 30 d in mixture with vinasse). Second, the irrigation test with Phaseolus vulgaris L. and Zea mays L. considered shoot and root growth and biomass under 21 days after plants emergence. The herbicide 2,4-D inhibited the initial growth of tested species, especially the roots (up to 45% inhibition). Furthermore, sugarcane vinasse caused harmful effects on plant growth (up to 31% inhibition). Therefore, our data showed that these contaminants could inhibit plant germination and initial growth under our tested conditions. These evaluations can endorse risk assessments and water management in sugarcane crops surrounding areas.


Assuntos
Praguicidas , Saccharum , Destilação , Etanol , Germinação/efeitos dos fármacos , Praguicidas/toxicidade , Sementes , Água , Poluentes Químicos da Água/efeitos adversos , Poluição Química da Água/efeitos adversos
10.
Environ Sci Pollut Res Int ; 29(24): 35800-35810, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35061173

RESUMO

Algal organic matter (AOM) in water reservoirs is a worldwide concern for drinking water treatment; once it is one of the main precursors for disinfection by-products formation (DBPs). In this context, this study investigated the ecotoxicity of DBPs from chlorination of AOM to Ceriodaphnia silvestrii and Daphnia similis (Crustacea, Cladocera). The bioassays evaluated three scenarios, including the AOM extracted from Chlorella sorokiniana, the quenching condition used in the tests, and the DBPs formed after the chlorination of the two test waters with AOM (with and without bromide presence). The results showed that AOM has no toxic effects for the tested species under typical environmental concentration (5 mg∙L-1). However, since AOM is a potential precursor of DBPs, the toxicity of two test waters (TW-1 and TW-2) after the chlorination process (25 mg Cl2·L-1, for 7 days, at 20 °C) was tested. The sample with higher toxicity to the tested species was TW-1, in which chloroform and chloral hydrate were quantified (615 and 267 µg∙L-1, respectively). However, TW-2 showed lower concentration of chloroform and chloral hydrate (260 and 157 µg∙L-1, respectively), although bromodichloromethane, dibromochloromethane, and bromoform were also detected (464, 366, and 141 µg∙L-1, respectively). Although free chlorine is highly toxic to the tested species, the quenching conditions also affected the organisms' survival due to the use of ascorbic acid and the presence of reaction intermediates. Nonetheless, both species were more affected by TW-1 and TW-2 than the quenching condition. These results endorse the importance of removing the AOM before the disinfection process to avoid the formation of DBPs. In addition, ecotoxicological analyses could provide a more comprehensive assessment of water quality, especially considering the challenges of quantifying DBPs and other emerging contaminants.


Assuntos
Chlorella , Cladocera , Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Animais , Brometos , Hidrato de Cloral , Cloro/análise , Clorofórmio/análise , Daphnia , Desinfetantes/toxicidade , Desinfecção , Halogenação , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA