Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(6): 110076, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38883845

RESUMO

Neuronal ensembles are crucial for episodic memory and spatial mapping. Sleep, particularly non-REM (NREM), is vital for memory consolidation, as it triggers plasticity mechanisms through brain oscillations that reactivate neuronal ensembles. Here, we assessed their role in consolidating hippocampal spatial representations during sleep. We recorded hippocampus activity in rats performing a spatial object-place recognition (OPR) memory task, during encoding and retrieval periods, separated by intervening sleep. Successful OPR retrieval correlated with NREM duration, during which cortical oscillations decreased in power and density as well as neuronal spiking, suggesting global downregulation of network excitability. However, neurons encoding specific spatial locations (i.e., place cells) or objects during OPR showed stronger synchrony with brain oscillations compared to non-encoding neurons, and the stability of spatial representations decreased proportionally with NREM duration. Our findings suggest that NREM sleep may promote flexible remapping in hippocampal ensembles, potentially aiding memory consolidation and adaptation to novel spatial contexts.

2.
Front Neurosci ; 18: 1237748, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384483

RESUMO

Rodents establish dominance hierarchy as a social ranking system in which one subject acts as dominant over all the other subordinate individuals. Dominance hierarchy regulates food access and mating opportunities, but little is known about its significance in other social behaviors, for instance during collective navigation for foraging or migration. Here, we implemented a simplified goal-directed spatial task in mice, in which animals navigated individually or collectively with their littermates foraging for food. We compared between conditions and found that the social condition exerts significant influence on individual displacement patterns, even when efficient navigation rules leading to reward had been previously learned. Thus, movement patterns and consequent task performance were strongly dependent on contingent social interactions arising during collective displacement, yet their influence on individual behavior was determined by dominance hierarchy. Dominant animals did not behave as leaders during collective displacement; conversely, they were most sensitive to the social environment adjusting their performance accordingly. Social ranking in turn was associated with specific spontaneous neural activity patterns in the prefrontal cortex and hippocampus, with dominant mice showing higher firing rates, larger ripple oscillations, and stronger neuronal entrainment by ripples than subordinate animals. Moreover, dominant animals selectively increased their cortical spiking activity during collective movement, while subordinate mice did not modify their firing rates, consistent with dominant animals being more sensitive to the social context. These results suggest that dominance hierarchy influences behavioral performance during contingent social interactions, likely supported by the coordinated activity in the hippocampal-prefrontal circuit.

3.
Front Aging Neurosci ; 15: 1180987, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37358955

RESUMO

Background: Growing evidence suggests that the non-receptor tyrosine kinase, c-Abl, plays a significant role in the pathogenesis of Alzheimer's disease (AD). Here, we analyzed the effect of c-Abl on the cognitive performance decline of APPSwe/PSEN1ΔE9 (APP/PS1) mouse model for AD. Methods: We used the conditional genetic ablation of c-Abl in the brain (c-Abl-KO) and pharmacological treatment with neurotinib, a novel allosteric c-Abl inhibitor with high brain penetrance, imbued in rodent's chow. Results: We found that APP/PS1/c-Abl-KO mice and APP/PS1 neurotinib-fed mice had improved performance in hippocampus-dependent tasks. In the object location and Barnes-maze tests, they recognized the displaced object and learned the location of the escape hole faster than APP/PS1 mice. Also, APP/PS1 neurotinib-fed mice required fewer trials to reach the learning criterion in the memory flexibility test. Accordingly, c-Abl absence and inhibition caused fewer amyloid plaques, reduced astrogliosis, and preserved neurons in the hippocampus. Discussion: Our results further validate c-Abl as a target for AD, and the neurotinib, a novel c-Abl inhibitor, as a suitable preclinical candidate for AD therapies.

4.
Brain Sci ; 13(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36671983

RESUMO

The septal complex regulates both motivated and innate behaviors, chiefly by the action of its diverse population of long-range projection neurons. A small population of somatostatin-expressing GABAergic cells in the lateral septum projects deep into subcortical regions, yet on its way it also targets neighboring medial septum neurons that profusely innervate cortical targets by ascending synaptic pathways. Here, we used optogenetic stimulation and extracellular recordings in acutely anesthetized transgenic mice to show that lateral septum somatostatin neurons can disinhibit the cholinergic septo-hippocampal pathway, thus enhancing the amplitude and synchrony of theta oscillations while depressing sharp-wave ripple episodes in the dorsal hippocampus. These results suggest that septal somatostatin cells can recruit ascending cholinergic pathways to promote hippocampal theta oscillations.

5.
Cereb Cortex ; 31(2): 1046-1059, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33026440

RESUMO

Memory systems ought to store and discriminate representations of similar experiences in order to efficiently guide future decisions. This problem is solved by pattern separation, implemented in the dentate gyrus (DG) by granule cells to support episodic memory formation. Pattern separation is enabled by tonic inhibitory bombardment generated by multiple GABAergic cell populations that strictly maintain low activity levels in granule cells. Somatostatin-expressing cells are one of those interneuron populations, selectively targeting the distal dendrites of granule cells, where cortical multimodal information reaches the DG. Nonetheless, somatostatin cells have very low connection probability and synaptic efficacy with both granule cells and other interneuron types. Hence, the role of somatostatin cells in DG circuitry, particularly in the context of pattern separation, remains uncertain. Here, by using optogenetic stimulation and behavioral tasks in mice, we demonstrate that somatostatin cells are required for the acquisition of both contextual and spatial overlapping memories.


Assuntos
Giro Denteado/citologia , Giro Denteado/metabolismo , Aprendizagem por Discriminação/fisiologia , Memória Episódica , Células Secretoras de Somatostatina/metabolismo , Animais , Giro Denteado/química , Feminino , Ácido Glutâmico/análise , Ácido Glutâmico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Optogenética/métodos , Somatostatina/análise , Somatostatina/metabolismo , Células Secretoras de Somatostatina/química
6.
Sci Rep ; 9(1): 2570, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30796293

RESUMO

The basal forebrain delivers extensive axonal projections to the cortical mantle regulating brain states and cognitive processing. Recent evidence has established the basal forebrain as a subcortical node of the default mode network that directionally influences cortical dynamics trough gamma oscillations, yet their synaptic origin has not been established. Here, we used optogenetic stimulation and in vivo recordings of transgenic mice to show that somatostatin neurons exert an anatomically specialized role in the coordination of subcortical gamma oscillations of the rostral basal forebrain. Indeed, the spike timing of somatostatin cells was tightly correlated with gamma oscillations in the ventral pallidum, but not in the medial septum. Consequently, optogenetic inactivation of somatostatin neurons selectively disrupted the amplitude and coupling of gamma oscillations only in the ventral pallidum. Moreover, photosupression of somatostatin cells produced specific behavioral interferences, with the ventral pallidum regulating locomotor speed and the medial septum modulating spatial working memory. Altogether, these data suggest that basal forebrain somatostatin cells can selectively synchronize local neuronal networks in the gamma band directly impinging on cortical dynamics and behavioral performance. This further supports the role of the basal forebrain as a subcortical switch commanding transitions between internally and externally oriented brain states.


Assuntos
Prosencéfalo Basal/metabolismo , Cognição , Ritmo Gama , Atividade Motora , Neurônios/metabolismo , Somatostatina/metabolismo , Animais , Prosencéfalo Basal/citologia , Camundongos , Camundongos Transgênicos , Neurônios/citologia , Somatostatina/genética
7.
Cereb Cortex ; 29(1): 42-53, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29161383

RESUMO

The basal forebrain provides modulatory input to the cortex regulating brain states and cognitive processing. Somatostatin-expressing neurons constitute a heterogeneous GABAergic population known to functionally inhibit basal forebrain cortically projecting cells thus favoring sleep and cortical synchronization. However, it remains unclear if somatostatin cells can regulate population activity patterns in the basal forebrain and modulate cortical dynamics. Here, we demonstrate that somatostatin neurons regulate the corticopetal synaptic output of the basal forebrain impinging on cortical activity and behavior. Optogenetic inactivation of somatostatin neurons in vivo rapidly modified neural activity in the basal forebrain, with the consequent enhancement and desynchronization of activity in the prefrontal cortex, reflected in both neuronal spiking and network oscillations. Cortical activation was partially dependent on cholinergic transmission, suppressing slow waves and potentiating gamma oscillations. In addition, recruitment dynamics was cell type-specific, with interneurons showing similar temporal profiles, but stronger responses than pyramidal cells. Finally, optogenetic stimulation of quiescent animals during resting periods prompted locomotor activity, suggesting generalized cortical activation and increased arousal. Altogether, we provide physiological and behavioral evidence indicating that somatostatin neurons are pivotal in gating the synaptic output of the basal forebrain, thus indirectly controlling cortical operations via both cholinergic and non-cholinergic mechanisms.


Assuntos
Potenciais de Ação/fisiologia , Prosencéfalo Basal/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Somatostatina/fisiologia , Animais , Prosencéfalo Basal/química , Prosencéfalo Basal/citologia , Feminino , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/química , Optogenética/métodos , Técnicas de Cultura de Órgãos , Córtex Pré-Frontal/química , Córtex Pré-Frontal/citologia , Somatostatina/análise
8.
Proc Natl Acad Sci U S A ; 115(27): 7123-7128, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29915053

RESUMO

Learning the location of relevant places in the environment is crucial for survival. Such capacity is supported by a distributed network comprising the prefrontal cortex and hippocampus, yet it is not fully understood how these structures cooperate during spatial reference memory formation. Hence, we examined neural activity in the prefrontal-hippocampal circuit in mice during acquisition of spatial reference memory. We found that interregional oscillatory coupling increased with learning, specifically in the slow-gamma frequency (20 to 40 Hz) band during spatial navigation. In addition, mice used both spatial and nonspatial strategies to navigate and solve the task, yet prefrontal neuronal spiking and oscillatory phase coupling were selectively enhanced in the spatial navigation strategy. Lastly, a representation of the behavioral goal emerged in prefrontal spiking patterns exclusively in the spatial navigation strategy. These results suggest that reference memory formation is supported by enhanced cortical connectivity and evolving prefrontal spiking representations of behavioral goals.


Assuntos
Ritmo Gama/fisiologia , Hipocampo/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Memória Espacial/fisiologia , Navegação Espacial/fisiologia , Animais , Hipocampo/citologia , Masculino , Camundongos , Neurônios/citologia , Córtex Pré-Frontal/citologia
9.
Sci Rep ; 6: 29807, 2016 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-27411890

RESUMO

The midline thalamus is reciprocally connected with the medial temporal lobe, where neural circuitry essential for spatial navigation and memory formation resides. Yet, little information is available on the dynamic relationship between activity patterns in the midline thalamus and medial temporal lobe. Here, we report on the functional heterogeneity of anatomically-identified thalamic neurons and the differential modulation of their activity with respect to dorsal hippocampal rhythms in the anesthetized mouse. Midline thalamic neurons expressing the calcium-binding protein calretinin, irrespective of their selective co-expression of calbindin, discharged at overall low levels, did not increase their activity during hippocampal theta oscillations, and their firing rates were inhibited during hippocampal sharp wave-ripples. Conversely, thalamic neurons lacking calretinin discharged at higher rates, increased their activity during hippocampal theta waves, but remained unaffected during sharp wave-ripples. Our results indicate that the midline thalamic system comprises at least two different classes of thalamic projection neuron, which can be partly defined by their differential engagement by hippocampal pathways during specific network oscillations that accompany distinct behavioral contexts. Thus, different midline thalamic neuronal populations might be selectively recruited to support distinct stages of memory processing, consistent with the thalamus being pivotal in the dialogue of cortical circuits.


Assuntos
Hipocampo/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Lobo Temporal/fisiologia , Tálamo/fisiologia , Potenciais de Ação/fisiologia , Animais , Calbindina 2/metabolismo , Calbindinas/metabolismo , Hipocampo/anatomia & histologia , Memória/fisiologia , Camundongos Endogâmicos C57BL , Vias Neurais/fisiologia , Neurônios/metabolismo , Lobo Temporal/anatomia & histologia , Tálamo/anatomia & histologia
10.
Cereb Cortex ; 25(9): 3132-43, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24860018

RESUMO

Prenatal stress is a risk factor for the development of neuropsychiatric disorders, many of which are commonly characterized by an increased persistence of aversive remote memory. Here, we addressed the effect of prenatal stress on both memory consolidation and functional connectivity in the hippocampal-prefrontal cortex axis, a dynamical interplay that is critical for mnemonic processing. Pregnant mice of the C57BL6 strain were subjected to restraint stressed during the last week of pregnancy, and male offspring were behaviorally tested at adulthood for recent and remote spatial memory performance in the Barnes Maze test under an aversive context. Prenatal stress did not affect the acquisition or recall of recent memory. In contrast, it produced the persistence of remote spatial memory. Memory persistence was not associated with alterations in major network rhythms, such as hippocampal sharp-wave ripples (SWRs) or neocortical spindles. Instead, it was associated with a large decrease in the basal discharge activity of identified principal neurons in the medial prefrontal cortex (mPFC) as measured in urethane anesthetized mice. Furthermore, functional connectivity was disrupted, as the temporal coupling between neuronal discharge in the mPFC and hippocampal SWRs was decreased by prenatal stress. These results could be relevant to understand the biological basis of the persistence of aversive remote memories in stress-related disorders.


Assuntos
Hipocampo/fisiopatologia , Transtornos da Memória/etiologia , Memória de Longo Prazo/fisiologia , Córtex Pré-Frontal/fisiopatologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Estresse Psicológico/complicações , Análise de Variância , Animais , Eletrofisiologia , Feminino , Masculino , Aprendizagem em Labirinto , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais/fisiologia , Gravidez , Estatística como Assunto , Estresse Psicológico/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA