Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ecol Appl ; 31(3): e02254, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33159398

RESUMO

Ecological niche models (ENMs) have classically operated under the simplifying assumptions that there are no barriers to gene flow, species are genetically homogeneous (i.e., no population-specific local adaptation), and all individuals share the same niche. Yet, these assumptions are violated for most broadly distributed species. Here, we incorporate genetic data from the widespread riparian tree species narrowleaf cottonwood (Populus angustifolia) to examine whether including intraspecific genetic variation can alter model performance and predictions of climate change impacts. We found that (1) P. angustifolia is differentiated into six genetic groups across its range from México to Canada and (2) different populations occupy distinct climate niches representing unique ecotypes. Comparing model discriminatory power, (3) all genetically informed ecological niche models (gENMs) outperformed the standard species-level ENM (3-14% increase in AUC; 1-23% increase in pROC). Furthermore, (4) gENMs predicted large differences among ecotypes in both the direction and magnitude of responses to climate change and (5) revealed evidence of niche divergence, particularly for the Eastern Rocky Mountain ecotype. (6) Models also predicted progressively increasing fragmentation and decreasing overlap between ecotypes. Contact zones are often hotspots of diversity that are critical for supporting species' capacity to respond to present and future climate change, thus predicted reductions in connectivity among ecotypes is of conservation concern. We further examined the generality of our findings by comparing our model developed for a higher elevation Rocky Mountain species with a related desert riparian cottonwood, P. fremontii. Together our results suggest that incorporating intraspecific genetic information can improve model performance by addressing this important source of variance. gENMs bring an evolutionary perspective to niche modeling and provide a truly "adaptive management" approach to support conservation genetic management of species facing global change.


Assuntos
Mudança Climática , Ecossistema , Populus/genética , Adaptação Fisiológica , Canadá , México
2.
Nicotine Tob Res ; 23(6): 1055-1063, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33165565

RESUMO

INTRODUCTION: Tobacco smoking is the leading cause of preventable death globally. Smoking quantity, measured in cigarettes per day, is influenced both by the age of onset of regular smoking (AOS) and by genetic factors, including a strong effect of the nonsynonymous single-nucleotide polymorphism rs16969968. A previous study by Hartz et al. reported an interaction between these two factors, whereby rs16969968 risk allele carriers who started smoking earlier showed increased risk for heavy smoking compared with those who started later. This finding has yet to be replicated in a large, independent sample. METHODS: We performed a preregistered, direct replication attempt of the rs16969968 × AOS interaction on smoking quantity in 128 383 unrelated individuals from the UK Biobank, meta-analyzed across ancestry groups. We fit statistical association models mirroring the original publication as well as formal interaction tests on multiple phenotypic and analytical scales. RESULTS: We replicated the main effects of rs16969968 and AOS on cigarettes per day but failed to replicate the interaction using previous methods. Nominal significance of the rs16969968 × AOS interaction term depended strongly on the scale of analysis and the particular phenotype, as did associations stratified by early/late AOS. No interaction tests passed genome-wide correction (α = 5e-8), and all estimated interaction effect sizes were much smaller in magnitude than previous estimates. CONCLUSIONS: We failed to replicate the strong rs16969968 × AOS interaction effect previously reported. If such gene-moderator interactions influence complex traits, they likely depend on scale of measurement, and current biobanks lack the power to detect significant genome-wide associations given the minute effect sizes expected. IMPLICATIONS: We failed to replicate the strong rs16969968 × AOS interaction effect on smoking quantity previously reported. If such gene-moderator interactions influence complex traits, current biobanks lack the power to detect significant genome-wide associations given the minute effect sizes expected. Furthermore, many potential interaction effects are likely to depend on the scale of measurement employed.


Assuntos
Fumar , Idade de Início , Predisposição Genética para Doença , Humanos , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo Único , Receptores Nicotínicos/genética , Fumar/genética , Fumar Tabaco
3.
Nicotine Tob Res ; 22(8): 1310-1315, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31930296

RESUMO

INTRODUCTION: Smoking is a leading cause of death, and genetic variation contributes to smoking behaviors. Identifying genes and sets of genes that contribute to risk for addiction is necessary to prioritize targets for functional characterization and for personalized medicine. METHODS: We performed a gene set-based association and heritable enrichment study of two addiction-related gene sets, those on the Smokescreen Genotyping Array and the nicotinic acetylcholine receptors, using the largest available GWAS summary statistics. We assessed smoking initiation, cigarettes per day, smoking cessation, and age of smoking initiation. RESULTS: Individual genes within each gene set were significantly associated with smoking behaviors. Both sets of genes were significantly associated with cigarettes per day, smoking initiation, and smoking cessation. Age of initiation was only associated with the Smokescreen gene set. Although both sets of genes were enriched for trait heritability, each accounts for only a small proportion of the single nucleotide polymorphism-based heritability (2%-12%). CONCLUSIONS: These two gene sets are associated with smoking behaviors, but collectively account for a limited amount of the genetic and phenotypic variation of these complex traits, consistent with high polygenicity. IMPLICATIONS: We evaluated evidence for the association and heritable contribution of expert-curated and bioinformatically identified sets of genes related to smoking. Although they impact smoking behaviors, these specifically targeted genes do not account for much of the heritability in smoking and will be of limited use for predictive purposes. Advanced genome-wide approaches and integration of other 'omics data will be needed to fully account for the genetic variation in smoking phenotypes.


Assuntos
Comportamento Aditivo/genética , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Receptores Nicotínicos/genética , Fumar/genética , Idade de Início , Comportamento Aditivo/epidemiologia , Comportamento Aditivo/psicologia , Colorado/epidemiologia , Humanos , Fenótipo , Fumar/epidemiologia , Fumar/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA