Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 11(6)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38927827

RESUMO

Degenerative disc disease (DDD) is a pervasive condition that limits quality of life and burdens economies worldwide. Conventional pharmacological treatments primarily aimed at slowing the progression of degeneration have demonstrated limited long-term efficacy and often do not address the underlying causes of the disease. On the other hand, orthobiologics are regenerative agents derived from the patient's own tissue and represent a promising emerging therapy for degenerative disc disease. This review comprehensively outlines the pathophysiology of DDD, highlighting the inadequacies of existing pharmacological therapies and detailing the potential of orthobiologic approaches. It explores advanced tools such as platelet-rich plasma and mesenchymal stem cells, providing a historical overview of their development within regenerative medicine, from foundational in vitro studies to preclinical animal models. Moreover, the manuscript delves into clinical trials that assess the effectiveness of these therapies in managing DDD. While the current clinical evidence is promising, it remains insufficient for routine clinical adoption due to limitations in study designs. The review emphasizes the need for further research to optimize these therapies for consistent and effective clinical outcomes, potentially revolutionizing the management of DDD and offering renewed hope for patients.

2.
Gels ; 9(7)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37504432

RESUMO

Platelet- and fibrin-rich orthobiologic products, such as autologous platelet concentrates, have been extensively studied and appreciated for their beneficial effects on multiple conditions. Platelet-rich plasma (PRP) and its derivatives, including platelet-rich fibrin (PRF), have demonstrated encouraging outcomes in clinical and laboratory settings, particularly in the treatment of musculoskeletal disorders such as osteoarthritis (OA). Although PRP and PRF have distinct characteristics, they share similar properties. The relative abundance of platelets, peripheral blood cells, and molecular components in these orthobiologic products stimulates numerous biological pathways. These include inflammatory modulation, augmented neovascularization, and the delivery of pro-anabolic stimuli that regulate cell recruitment, proliferation, and differentiation. Furthermore, the fibrinolytic system, which is sometimes overlooked, plays a crucial role in musculoskeletal regenerative medicine by regulating proteolytic activity and promoting the recruitment of inflammatory cells and mesenchymal stem cells (MSCs) in areas of tissue regeneration, such as bone, cartilage, and muscle. PRP acts as a potent signaling agent; however, it diffuses easily, while the fibrin from PRF offers a durable scaffolding effect that promotes cell activity. The combination of fibrin with hyaluronic acid (HA), another well-studied orthobiologic product, has been shown to improve its scaffolding properties, leading to more robust fibrin polymerization. This supports cell survival, attachment, migration, and proliferation. Therefore, the administration of the "power mix" containing HA and autologous PRP + PRF may prove to be a safe and cost-effective approach in regenerative medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA