Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Front Pediatr ; 11: 1210158, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37425258

RESUMO

Introduction: Hemolytic uremic syndrome (HUS) is a condition that results in acute kidney failure mainly in children, which is caused by Shiga toxin-producing Escherichia coli and inflammatory response. Although anti-inflammatory mechanisms are triggered, studies on the implication in HUS are scarce. Interleukin-10 (IL-10) regulates inflammation in vivo, and the interindividual differences in its expression are related to genetic variants. Notably, the single nucleotide polymorphism (SNP) rs1800896 -1082 (A/G), located in the IL-10 promoter, regulates cytokine expression. Methods: Plasma and peripheral blood mononuclear cells (PBMC) were collected from healthy children and HUS patients exhibiting hemolytic anemia, thrombocytopenia, and kidney damage. Monocytes identified as CD14+ cells were analyzed within PBMC by flow cytometry. IL-10 levels were quantified by ELISA, and SNP -1082 (A/G) was analyzed by allele-specific PCR. Results: Circulating IL-10 levels were increased in HUS patients, but PBMC from these patients exhibited a lower capacity to secrete this cytokine compared with those from healthy children. Interestingly, there was a negative association between the circulating levels of IL-10 and inflammatory cytokine IL-8. We observed that circulating IL-10 levels were threefold higher in HUS patients with -1082G allele in comparison to AA genotype. Moreover, there was relative enrichment of GG/AG genotypes in HUS patients with severe kidney failure. Discussion: Our results suggest a possible contribution of SNP -1082 (A/G) to the severity of kidney failure in HUS patients that should be further evaluated in a larger cohort.

2.
Pediatr Nephrol ; 38(3): 739-748, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35802271

RESUMO

BACKGROUND: Hemolytic uremic syndrome (HUS) is characterized by microangiopathic hemolysis, thrombocytopenia, and thrombus formation leading to tissue injury. HUS is classified according to its etiology as post-diarrheal or atypical HUS. Differential diagnosis of both entities continues to be a challenge for pediatric physicians. METHODS: The aim was to improve the rapid etiological diagnosis of post-diarrheal HUS cases based on the detection of Shiga toxin (Stx)-producing Escherichia coli (STEC) infection by screening of stx1/stx2 and rfbO157 in cultured stools by multiplex PCR, and the additional detection of anti-lipopolysaccharide (anti-LPS) O157, O145, and O121 antibodies by Glyco-iELISA test. In addition, we studied patients' relatives to detect circulating pathogenic strains that could contribute to HUS diagnosis and/or lead to the implementation of measures to prevent dissemination of familial outbreaks. This study describes the diagnosis of 31 HUS patients admitted to Hospital Municipal de Niños Prof Dr Ramón Exeni during the 2017-2020 period. RESULTS: Stool PCR confirmed the diagnosis of STEC associated with HUS in 38.7% of patients (12/31), while anti-LPS serology did in 88.9% (24/27). In those patients in which both methods were carried out (n = 27), a strong association between the results obtained was found. We found that 30.4% of HUS patients had at least one relative positive for STEC. CONCLUSIONS: We could identify 96.3% (26/27) of HUS cases as secondary to STEC infections when both methods (genotyping and serology) were used. The results demonstrated a high circulation of STEC in HUS families and the prevalence of the STEC O157 serotype (83%) in our pediatric cohort. A higher-resolution version of the Graphical abstract is available as Supplementary information.


Assuntos
Síndrome Hemolítico-Urêmica Atípica , Infecções por Escherichia coli , Escherichia coli Shiga Toxigênica , Criança , Humanos , Diarreia/diagnóstico , Diarreia/etiologia , Diarreia/epidemiologia , Sorogrupo , Lipopolissacarídeos , Anticorpos Antibacterianos , Infecções por Escherichia coli/complicações , Infecções por Escherichia coli/diagnóstico , Infecções por Escherichia coli/epidemiologia
3.
Pediatr Nephrol ; 33(11): 2057-2071, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29372302

RESUMO

Hemolytic uremic syndrome (HUS) is defined as a triad of noninmune microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury. The most frequent presentation is secondary to Shiga toxin (Stx)-producing Escherichia coli (STEC) infections, which is termed postdiarrheal, epidemiologic or Stx-HUS, considering that Stx is the necessary etiological factor. After ingestion, STEC colonize the intestine and produce Stx, which translocates across the intestinal epithelium. Once Stx enters the bloodstream, it interacts with renal endothelial and epithelial cells, and leukocytes. This review summarizes the current evidence about the involvement of inflammatory components as central pathogenic factors that could determine outcome of STEC infections. Intestinal inflammation may favor epithelial leakage and subsequent passage of Stx to the systemic circulation. Vascular damage triggered by Stx promotes not only release of thrombin and increased fibrin concentration but also production of cytokines and chemokines by endothelial cells. Recent evidence from animal models and patients strongly indicate that several immune cells types may participate in HUS physiopathology: neutrophils, through release of proteases and reactive oxygen species (ROS); monocytes/macrophages through secretion of cytokines and chemokines. In addition, high levels of Bb factor and soluble C5b-9 (sC5b-9) in plasma as well as complement factors adhered to platelet-leukocyte complexes, microparticles and microvesicles, suggest activation of the alternative pathway of complement. Thus, acute immune response secondary to STEC infection, the Stx stimulatory effect on different immune cells, and inflammatory stimulus secondary to endothelial damage all together converge to define a strong inflammatory status that worsens Stx toxicity and disease.


Assuntos
Infecções por Escherichia coli/imunologia , Síndrome Hemolítico-Urêmica/imunologia , Microvasos/patologia , Escherichia coli Shiga Toxigênica/imunologia , Animais , Via Alternativa do Complemento/imunologia , Citocinas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Células Endoteliais/imunologia , Células Endoteliais/patologia , Endotélio Vascular/citologia , Endotélio Vascular/imunologia , Endotélio Vascular/patologia , Células Epiteliais/imunologia , Células Epiteliais/patologia , Infecções por Escherichia coli/sangue , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Síndrome Hemolítico-Urêmica/sangue , Síndrome Hemolítico-Urêmica/microbiologia , Síndrome Hemolítico-Urêmica/patologia , Humanos , Mucosa Intestinal/microbiologia , Rim/irrigação sanguínea , Rim/imunologia , Rim/patologia , Microvasos/citologia , Microvasos/imunologia , Escherichia coli Shiga Toxigênica/isolamento & purificação
4.
Toxins (Basel) ; 9(11)2017 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-29068360

RESUMO

Shiga toxin (Stx), produced by Escherichia coli, is the main pathogenic factor of diarrhea-associated hemolytic uremic syndrome (HUS), which is characterized by the obstruction of renal microvasculature by platelet-fibrin thrombi. It is well known that the oxidative imbalance generated by Stx induces platelet activation, contributing to thrombus formation. Moreover, activated platelets release soluble CD40 ligand (sCD40L), which in turn contributes to oxidative imbalance, triggering the release of reactive oxidative species (ROS) on various cellular types. The aim of this work was to determine if the interaction between the oxidative response and platelet-derived sCD40L, as consequence of Stx-induced endothelium damage, participates in the pathogenic mechanism during HUS. Activated human glomerular endothelial cells (HGEC) by Stx2 induced platelets to adhere to them. Although platelet adhesion did not contribute to endothelial damage, high levels of sCD40L were released to the medium. The release of sCD40L by activated platelets was inhibited by antioxidant treatment. Furthermore, we found increased levels of sCD40L in plasma from HUS patients, which were also able to trigger the respiratory burst in monocytes in a sCD40L-dependent manner. Thus, we concluded that platelet-derived sCD40L and the oxidative response are reciprocally stimulated during Stx2-associated HUS. This process may contribute to the evolution of glomerular occlusion and the microangiopathic lesions.


Assuntos
Ligante de CD40/sangue , Células Endoteliais/efeitos dos fármacos , Síndrome Hemolítico-Urêmica/sangue , Toxina Shiga/toxicidade , Células Cultivadas , Criança , Pré-Escolar , Células Endoteliais/patologia , Feminino , Síndrome Hemolítico-Urêmica/induzido quimicamente , Humanos , Lactente , Rim/metabolismo , Rim/patologia , Masculino , Microvasos , Monócitos/metabolismo , Estresse Oxidativo , Ativação Plaquetária/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
6.
Clin Sci (Lond) ; 129(3): 235-44, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25748554

RESUMO

Haemolytic uraemic syndrome (HUS) is the major complication of Escherichia coli gastrointestinal infections that are Shiga toxin (Stx) producing. Monocytes contribute to HUS evolution by producing cytokines that sensitize endothelial cells to Stx action and migration to the injured kidney. As CC chemokine receptors (CCRs) are involved in monocyte recruitment to injured tissue, we analysed the contribution of these receptors to the pathogenesis of HUS. We analysed CCR1, CCR2 and CCR5 expression in peripheral monocytes from HUS patients during the acute period, with healthy children as controls. We observed an increased expression of CCRs per cell in monocytes from HUS patients, accompanied by an increase in the absolute number of monocytes CCR1+, CCR2+ and CCR5+. It is interesting that prospective analysis confirmed that CCR1 expression positively correlated with HUS severity. The evaluation of chemokine levels in plasma showed that regulated on activation of normal T-cell-expressed and -secreted (RANTES) protein was reduced in plasma from patients with severe HUS, and this decrease correlated with thrombocytopenia. Finally, the expression of the higher CCRs was accompanied by a loss of functionality which could be due to a mechanism for desensitization to compensate for altered receptor expression. The increase in CCR expression correlates with HUS severity, suggesting that the dysregulation of these receptors might contribute to an increased risk of renal damage. Activated monocytes could be recruited by chemokines and then receptors could be dysregulated. The dysregulation of CCRs and their ligands observed during the acute period suggests that a chemokine pathway would participate in HUS development.


Assuntos
Quimiocinas/imunologia , Síndrome Hemolítico-Urêmica/metabolismo , Monócitos/metabolismo , Receptores de Quimiocinas/metabolismo , Movimento Celular , Criança , Pré-Escolar , Feminino , Expressão Gênica/fisiologia , Síndrome Hemolítico-Urêmica/imunologia , Humanos , Rim/metabolismo , Masculino , Monócitos/citologia , Estudos Prospectivos
7.
J Clin Immunol ; 32(3): 622-31, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22228570

RESUMO

PURPOSE: The interaction of Shiga toxin (Stx) and/or lipopolysaccharide (LPS) with monocytes (Mo) may be central to the pathogenesis of hemolytic uremic syndrome (HUS), providing the cytokines necessary to sensitize endothelial cells to Stx action. We have previously demonstrated phenotypical alterations in Mo from HUS patients, including increased number of CD16+ Mo. Our aim was to investigate cytokine production in Mo from HUS patients. METHODS: We evaluated TNF-α and IL-10 intracellular contents and secretion in the different Mo subsets in mild (HUS 1) and moderate/severe (HUS 2 + 3) patients. As controls, we studied healthy (HC) and infected children (IC). We also studied Mo responsive capacity towards LPS, measuring the modulation of Mo surface molecules and cytokine production. RESULTS: In basal conditions, the intracellular measurement of TNF-α and IL-10 revealed that the highest number of cytokine-producing Mo was found in HUS 2 + 3 and IC, whereas LPS caused a similar increase in TNF-α and IL-10-producing Mo for all groups. However, when evaluating the release of TNF-α and IL-10, we found a diminished secretion capacity in the entire HUS group and IC compared to HC in basal and LPS conditions. Similarly, a lower Mo response to LPS in HUS 2 + 3 and IC groups was observed when surface markers were studied. CONCLUSION: These results indicate that Mo from severe cases of HUS, similar to IC but different to mild HUS cases, present functional changes in Mo subpopulations and abnormal responses to LPS.


Assuntos
Síndrome Hemolítico-Urêmica/imunologia , Interleucina-10/imunologia , Monócitos/imunologia , Fator de Necrose Tumoral alfa/imunologia , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Interleucina-10/sangue , Lipopolissacarídeos/imunologia , Masculino , Fator de Necrose Tumoral alfa/sangue
8.
Medicina (B Aires) ; 71(4): 383-9, 2011.
Artigo em Espanhol | MEDLINE | ID: mdl-21893458

RESUMO

The typical form of hemolytic uremic syndrome (HUS) is the major complication of Shiga toxin-producing Escherichia coli (STEC) infections. HUS is a critical health problem in Argentina since it is the main cause of acute renal failure in children and the second cause of chronic renal failure, giving account for 20% of renal transplants in children and adolescents in our country. In spite of the extensive research in the field, the mainstay of treatment for patients with HUS is supportive therapy, and there are no specific therapies preventing or ameliorating the disease course. In this review, we present the current knowledge about pathogenic mechanisms and discuss traditional and innovative therapeutic approaches, with special focus in national status and contributions made by Argentinean groups.


Assuntos
Síndrome Hemolítico-Urêmica , Escherichia coli Shiga Toxigênica , Argentina/epidemiologia , Síndrome Hemolítico-Urêmica/epidemiologia , Síndrome Hemolítico-Urêmica/microbiologia , Síndrome Hemolítico-Urêmica/terapia , Humanos , Escherichia coli Shiga Toxigênica/patogenicidade
9.
Medicina (B.Aires) ; 71(4): 383-389, July-Aug. 2011. ilus
Artigo em Espanhol | LILACS | ID: lil-633884

RESUMO

La forma típica o post-diarreica del síndrome urémico hemolítico (SUH) es la complicación más grave de las infecciones por cepas de Escherichia coli productoras de toxina Shiga (STEC). En la Argentina el SUH es un problema crítico de salud pública, ya que representa la principal causa de falla renal aguda en la infancia, la segunda causa de falla renal crónica, y aporta el 20% de los casos de transplante renal durante la infancia y la adolescencia. A pesar de los avances en el conocimiento de su patogénesis, el único tratamiento actual de los pacientes con SUH es de sostén, y no existen terapias específicas ni preventivas. En la presente revisión expondremos los conocimientos básicos de los mecanismos patogénicos y discutiremos los enfoques terapéuticos tradicionales e innovadores, con especial foco en la situación nacional y los aportes hechos por grupos de la Argentina.


The typical form of hemolytic uremic syndrome (HUS) is the major complication of Shiga toxin-producing Escherichia coli (STEC) infections. HUS is a critical health problem in Argentina since it is the main cause of acute renal failure in children and the second cause of chronic renal failure, giving account for 20% of renal transplants in children and adolescents in our country. In spite of the extensive research in the field, the mainstay of treatment for patients with HUS is supportive therapy, and there are no specific therapies preventing or ameliorating the disease course. In this review, we present the current knowledge about pathogenic mechanisms and discuss traditional and innovative therapeutic approaches, with special focus in national status and contributions made by Argentinean groups.


Assuntos
Humanos , Síndrome Hemolítico-Urêmica , Escherichia coli Shiga Toxigênica , Argentina/epidemiologia , Síndrome Hemolítico-Urêmica/epidemiologia , Síndrome Hemolítico-Urêmica/microbiologia , Síndrome Hemolítico-Urêmica/terapia , Escherichia coli Shiga Toxigênica/patogenicidade
10.
Pediatr Nephrol ; 26(8): 1247-54, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21533629

RESUMO

Proteinuria is the main indicator of renal disease progression in many chronic conditions. There is currently little information available on the efficacy, safety, and individual tolerance of patients with post-diarrheal hemolytic uremic syndrome (D+ HUS) nephropathy to therapies involving diet, enalapril, or losartan. A multicenter, double-blind, randomized controlled trail was conducted to evaluate the effect of a normosodic-normoproteic diet (Phase I) and the effect of normosodic-normoproteic diet plus enalapril (0.18-0.27 mg/kg/day) or losartan (0.89-1.34 mg/kg/day) (Phase II) on children with D+ HUS, normal renal function, and persistent, mild (5.1-49.9 mg/kg/day) proteinuria. Dietary intervention reduced the mean protein intake from 3.4 to 2.2 mg/kg/day. Of 137 children, proteinuria normalized in 91 (66.4 %) within 23-45 days; the remaining 46 patients were randomized to diet plus placebo (group 1, n = 16), plus losartan (group 2, n = 16), or enalapril (group 3, n = 14). In groups 1, 2, and 3, proteinuria was reduced by 30.0, 82.0, and 66.3%, respectively, and normalized in six (37.5%), three (81.3%), and 11 (78.6%) patients, respectively (χ(2)= 8.9, p = 0.015). These results suggest that: (1) a normosodic-normoproteic diet can normalize proteinuria in the majority of children with D+ HUS with mild sequelae, (2) the addition of enalapril or losartan to such dietary restrictions of protein further reduces proteinuria, and (3) these therapeutic interventions are safe and well tolerated. Whether these short-term effects can be extended to the long-term remains to be demonstrated.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Dietoterapia/métodos , Enalapril/uso terapêutico , Síndrome Hemolítico-Urêmica/terapia , Losartan/uso terapêutico , Adulto , Criança , Pré-Escolar , Diarreia/complicações , Método Duplo-Cego , Feminino , Humanos , Falência Renal Crônica/prevenção & controle , Masculino , Proteinúria/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA