Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res B Appl Biomater ; 110(1): 79-88, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34173713

RESUMO

This work aimed to assess the biomechanics, using the finite element method (FEM), of traditional titanium Morse taper (MT) dental implants compared to one-piece implants composed of zirconia, polyetheretherketone (PEEK), carbon fiber-reinforced PEEK (CFR-PEEK), or glass fiber-reinforced PEEK (GFR-PEEK). MT and one-piece dental implants were modeled within a mandibular bone section and loaded on an oblique force using FEM. A MT implant system involving a Ti6Al4V abutment and a cp-Ti grade IV implant was compared to one-piece implants composed of cp-Ti grade IV, zirconia (3Y-TZP), PEEK, CFR-PEEK, or GFR-PEEK. Stress on bone and implants was computed and analyzed while bone remodeling prediction was evaluated considering equivalent strain. In comparison to one-piece implants, the traditional MT implant revealed higher stress peak (112 MPa). The maximum stresses on the one-piece implants reached ~80 MPa, regardless their chemical composition. MT implant induced lower bone stimulus, although excessive bone strain was recorded for PEEK implants. Balanced strain levels were noticed for reinforced PEEK implants of which CFR-PEEK one-piece implants showed proper biomechanical behavior. Balanced strain levels might induce bone remodeling at the peri-implant region while maintaining low risks of mechanical failures. However, the strength of the PEEK-based composite materials is still low for long-term clinical performance.


Assuntos
Implantes Dentários , Titânio , Benzofenonas , Fenômenos Biomecânicos , Remodelação Óssea , Análise do Estresse Dentário , Análise de Elementos Finitos , Polímeros , Estresse Mecânico , Titânio/química , Zircônio
2.
J Mech Behav Biomed Mater ; 120: 104565, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34087536

RESUMO

OBJECTIVES: The aim of this work was to evaluate the biomechanical behavior of one-piece zirconia implants with a functionally graded bioglass (BG) layer as compared to monolithic zirconia and BG-coated implants, using the finite element method (FEM). METHODS: Zirconia disks were infiltrated with bioglass S53P4 and then morphologically inspected by scanning electron microscopy (SEM) followed by mechanical analyses on micro-indentation tests for further biomechanical validation using the finite element method (FEM). On modeling, zirconia dental implants anchored into mandibular bone were simulated on occlusal loading as recorded under mastication. Three types of implants were simulated: i) free of BG coating, ii) with 100 µm or 150 µm thick conventional BG coatings; and iii) with graded BG coatings involving 3 different chemical composition distributions. The stress state at both implant and bone were evaluated using the FEM. The mechanically-induced bone remodelling was analyzed through the bone strain results. RESULTS: Infiltration of BG into a zirconia structure resulted in a ∼100 µm thick layer with an exponential-like gradation of chemical composition and properties. Regarding the FEM calculations, the BG coating induced up to 30% decrease on stress in the implant body when compared to the monolithic zirconia implant. The gradient of chemical composition also improved the stresses' distribution. The stresses distribution towards the BG-coatings were significantly high and could lead to failure. Stresses on the bone were recorded down to its strength threshold, with insignificant influence of the coating layer. The bone strain values on all models indicates further bone remodelling although BG-coated and BG-graded zirconia implants showed the highest strain magnitude that may enhance the mechanical stimulation for bone maintenance. SIGNIFICANCE: Graded BG-zirconia dental implants showed enhanced overall biomechanical behaviour as compared to the BG-coated or monolithic zirconia dental implants. Also, such biomechanical improvements noticed for the BG-graded system should be considered in combination with the well-known osseointegration benefits of bioactive glasses.


Assuntos
Implantes Dentários , Fenômenos Biomecânicos , Cerâmica , Análise do Estresse Dentário , Análise de Elementos Finitos , Estresse Mecânico , Zircônio
3.
J Dent ; 69: 41-48, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28867661

RESUMO

OBJECTIVES: Thermal cycling is widely used to simulate the aging of restorative materials corresponding to the changes of temperature in the oral cavity. However, test parameters present in literature vary considerably, which prevents comparison between different reports. The aim of this work is to assess the influence of the specimens' geometry and materials on the thermal stresses developed during thermal cycling tests. MATERIALS AND METHODS: Finite elements method was used to simulate the conditions of thermal cycling tests for three different sample geometries: a three-points bending test sample, a cylinder rod and more complex shape of a restoration crown. Two different restorative systems were considered: all-ceramic (zirconia coupled with porcelain) and metal-ceramic (CoCrMo alloy coupled with porcelain). The stress state of each sample was evaluated throughout the test cycle. RESULTS: The results show that the sample geometry has great influence on the stress state, with difference of up to 230% in the maximum stress between samples of the same composition. The location of maximum stress also changed from the interface between materials to the external wall. CONCLUSIONS: Maximum absolute stress values were found to vary between 2 and 4MPa, which might not be critical even for ceramics. During multi-cycle testing these stresses would cause different fatigue in various locations. The zirconia-based specimens and zirconia-based restoration (crown) exhibited the most similar stress states. Thus it might be recommended to use these geometries for fast screening of the materials for this type of restorations. CLINICAL SIGNIFICANCE: The selection of specimens' geometry and materials should be carefully considered when aging conditions close to clinical ones want to be simulated.


Assuntos
Materiais Dentários/química , Restauração Dentária Permanente , Temperatura Alta , Teste de Materiais , Estresse Mecânico , Cerâmica/química , Coroas , Colagem Dentária , Porcelana Dentária/química , Análise de Elementos Finitos , Fenômenos Mecânicos , Ligas Metalo-Cerâmicas/química , Resistência ao Cisalhamento , Fatores de Tempo , Zircônio/química
4.
Ceram Int ; 43(4): 3670-3678, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28163345

RESUMO

Layered ceramic systems are usually hit by residual thermal stresses created during cooling from high processing temperature. The purpose of this study was to determine the thermal residual stresses at different ceramic multi-layered systems and evaluate their influence on the bending stress distribution. Finite elements method was used to evaluate the residual stresses in zirconia-porcelain and alumina-porcelain multi-layered discs and to simulate the 'piston-on-ring' test. Temperature-dependent material properties were used. Three different multi-layered designs were simulated: a conventional bilayered design; a trilayered design, with an intermediate composite layer with constant composition; and a graded design, with an intermediate layer with gradation of properties. Parameters such as the interlayer thickness and composition profiles were varied in the study. Alumina-porcelain discs present smaller residual stress than the zirconia-porcelain discs, regardless of the type of design. The homogeneous interlayer can yield a reduction of ~40% in thermal stress relative to bilayered systems. Thinner interlayers favoured the formation of lower thermal stresses. The graded discs showed the lowest thermal stresses for a gradation profile given by power law function with p=2. The bending stresses were significantly affected by the thermal stresses in the discs. The risk of failure for all-ceramic dental restorative systems can be significantly reduced by using trilayered systems (homogenous or graded interlayer) with the proper design.

5.
Ceram Int ; 42(9): 11025-11031, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28104926

RESUMO

The purpose of this study was to evaluate the biaxial flexural stresses in classic bilayered and in graded zirconia-feldspathic porcelain composites. A finite element method and an analytical model were used to simulate the piston-on-ring test and to predict the biaxial stress distributions across the thickness of the bilayer and graded zirconia-feldspathic porcelain discs. An axisymmetric model and a flexure formula of Hsueh et al. were used in the FEM and analytical analysis, respectively. Four porcelain thicknesses were tested in the bilayered discs. In graded discs, continuous and stepwise transitions from the bottom zirconia layer to the top porcelain layer were studied. The resulting stresses across the thickness, measured along the central axis of the disc, for the bilayered and graded discs were compared. In bilayered discs, the maximum tensile stress decreased while the stress mismatch (at the interface) increased with the porcelain layer thickness. The optimized balance between both variables is achieved for a porcelain thickness ratio in the range of 0.30-0.35. In graded discs, the highest tensile stresses were registered for porcelain rich interlayers (p=0.25) whereas the zirconia rich ones (p=8) yield the lowest tensile stresses. In addition, the maximum stresses in a graded structure can be tailored by altering compositional gradients. A decrease in maximum stresses with increasing values of p (a scaling exponent in the power law function) was observed. Our findings showed a good agreement between the analytical and simulated models, particularly in the tensile region of the disc. Graded zirconia-feldspathic porcelain composites exhibited a more favourable stress distribution relative to conventional bilayered systems. This fact can significantly impact the clinical performance of zirconia-feldspathic porcelain prostheses, namely reducing the fracture incidence of zirconia and the chipping and delamination of porcelain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA