Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(15): 11589-11596, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38533829

RESUMO

In this work, we proposed and investigated the structural and electronic properties of boron-based nanoscrolls (armchair and zigzag) using the DFTB+ method. We also investigated the electroactuation process (injecting and removing charges). A giant electroactuation was observed, but the results show relevant differences between the borophene and carbon nanoscrolls. The molecular dynamics simulations showed that the scrolls are thermally and structurally stable for a large range of temperatures (up to 600 K), and the electroactuation process can be easily tuned and can be entirely reversible for some configurations.

2.
J Mol Model ; 29(7): 202, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37278949

RESUMO

CONTEXT: The discovery of graphene gave way to the search for new two-dimensional structures. In this regard, octa-graphene is a carbon allotrope consisting of 4- and 8-membered rings in a single planar sheet, drawing the research community's attention to study their inorganic analogs. Considering the promising properties of octa-graphene-like structures and the role of GaAs and GaP in semiconductor physics, this study aims to propose, for the first time, two novel inorganics buckled nanosheets based on the octa-graphene structure, the octa-GaAs and octa-GaP. This work investigated the structural, electronic, and vibrational properties of these novel octa-graphene-based materials. The octa-GaP and octa-GaAs have an indirect band gap transition with a valence band maximum between M and Г points and a conduction band minimum at Г point with energy of 3.05 eV and 2.56 eV, respectively. The QTAIMC analysis indicates that both structures have incipient covalent in their bonds. The vibrational analysis demonstrates the occurrence of ΓRaman = 6Ag + 6Bg and ΓRaman = 12A' + 12B″ for octa-GaP and octa-GaAs, respectively. The symmetry reduction of octa-GaAs leads to activating inactive modes observed in the octa-GaP structure. The frontier crystalline orbitals are composed by Ga(px) and P(py and pz) orbitals for octa-GaP and Ga(px and py) and As(s, py, and pz) for octa-GaAs in the valence bands while in the conduction bands by Ga(py, pz, and s) for both compounds and P(px and pz) and As(py). The phonon bands demonstrate the absence of the negative frequency modes and the structural stability of these new nanosheets. This report aims to reveal the fundamental properties of both newfound materials for stimulating experimental research groups in the search for synthesis routes to obtain this structure. METHODS: This work used the DFT/B3LYP approach implemented in the CRYSTAL17 computational package. Ga, As, and P atomic centers were described by triple-zeta valence with polarization (TZVP) basis set. The vibrational analysis was carried out via coupled-perturbed Hartree-Fock/Kohn Sham (CPHF/KS) method, and the chemical bonds were evaluated via the quantum theory of atoms in molecules and crystals (QTAIMC).

3.
J Chem Inf Model ; 63(7): 1999-2013, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36952668

RESUMO

We present TopIso3D Viewer, a software with a user-friendly graphical interface, that generates three-dimensional maps to analyze descriptors based on the Quantum Theory of Atoms in Molecules (QTAIM), applied in periodic and nonperiodic systems. The software also automates the launching of topological analysis calculations through the Topond package and generates a report that facilitates the identification of the values of the calculated descriptors, in the Bond Critical Points (BCP) and Critical Points of the Laplacian of the electron density (LCP), facilitating the classification of chemical interactions. The map projects created can be stored in the form of HTML files, for later consultation through any type of browser. For validation of the software, several systems with 0-3D dimensions were studied. In addition, the topology of urea molecular crystal and its isolated molecule were revisited.


Assuntos
Teoria Quântica , Software , Modelos Moleculares
4.
Heliyon ; 5(10): e02500, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31667374

RESUMO

Cu2O low-index surfaces periodic models have been simulated based on density functional theory. The calculated surfaces energies allowed estimating the morphology by means of the Wulff theorem as well as the investigation of possible paths of morphological changes. Therefore, systematic morphology diagrams and change paths according to the energy modulation in relation to the surfaces stabilizations were elaborated. The applicability of this strategy was exemplified by comparing the obtained results with experimental available data from the literature. The morphology diagrams with the quantitative energetic point of view can be used as a guide to support experimental works in order to understand the relation between surface interactions and crystal growth.

5.
ACS Omega ; 3(10): 13413-13421, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458053

RESUMO

A computational study via periodic density functional theory of porous nanotubes derived from single-layer surfaces of porous hexagonal boron nitride nanotubes (PBNNTs) and inorganic graphenylene-like boron nitride nanotubes (IGP-BNNTs) has been carried out with the main focus in its piezoelectric behavior. The simulations showed that the strain provides a meaningful improve in the piezoelectric response on the zigzag porous boron nitride nanotubes. Additionally, its stability, possible formation, elastic, and electronic properties were analyzed, and for comparison purpose, the porous graphene and graphenylene nanotubes were studied. From the elastic properties study, it was found that IGP-BNNTs exhibited a higher rigidity because of the influence of the superficial porous area, as compared to PBNNTs. The present study provides evidence that the strain is a way to maximize the piezoelectric response and make this material a good candidate for electromechanical devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA